Category Archives: Bargaining

“The Efficiency of Dynamic Post-Auction Bargaining: Evidence from Wholesale Used-Auto Auctions,” B. Larsen (2013)

Another job market season is in the books, as Brad Larsen was the last job talk I made it to this year. Here’s something you may not have known: there is an industry which sells lots of used cars at auctions. Each year, they sell eighty billion dollars worth of cars at these auctions! I’ve written auction theory papers before, and yet have never even heard of this industry. The complexity of economics never fails to impress, but this is good; it means there is always something interesting for us economists to study.

Now when you hear “inefficient bargaining” and “autos”, you probably immediately think of Stiglitz’ lemons model. But selection really isn’t a big issue in these used-auto auctions. Car rental agencies that participate, for instance, sell off an entire season of cars all at once. The real inefficiency is of the Myerson-Satterthwaite type. In that classic result, your private value for a good and my private value for a good are drawn from overlapping distributions – and “draw” and “distribution” may be over the set of all possible buyers or sellers as in Harsanyi purification – then there is no price at which we would agree to a transaction. (You must know Myerson-Satterthwaite! Among other things, it absolutely destroys the insight behind the Coase theorem…) Myerson and Satterthwaite, as well as a handful of other others, later fully described the second-best mechanism when first-best trade is impossible. This second-best mechanism turns out to be quite complicated. Almost all of the auto auction houses use a seemingly strange mechanism instead. First, sellers set a secret reserve which is told to the auctioneer. Then the car is sold in an English auction. If the auction ends below the reserve price, then sellers and potential buyers can opt to bargain individually over the phone, perhaps asynchronously. At the end of these bargains, there are still many cars that go unsold.

This brings up the obvious question: how close to the second-best optimum is this strange selling mechanism? Larsen got access to some amazing data, which included outcomes of the auction, all of the sequential offers made over the phone, seller secret reserve prices, and tons of data at the level of the car and the buyer. The problem, of course, is that we don’t have access to the seller and buyer types (i.e., their private valuations of the car). Indeed, we don’t even have knowledge of the distribution of their types. If you are a regular reader of this blog, you know what is coming next – we can perhaps back out those distributions, but only if theory is applied in a clever way. (And, wow, how are job market speakers not permanently nervous? It’s one thing to stretch the Myerson-Satterthwaite framework to its limits, but it’s another thing to do so when Mark is sitting in the front row of the seminar room, as was the case here at Kellogg. Luckily, he’s a nice guy!)

The high bid in the auction helps us get buyer valuations. This high bid is, if bidders bid truthfully, equivalent to the second-order statistic of bidder values. Order theory turns out to give us a precise relationship between the underlying distribution and distribution of draws of its second-order statistic (when the second order is from a set of N draws from the distribution). Larsen knows exactly how many people were at each auction house, and can use this to roughly estimate how many bidders could potentially have bid on each car. Homogenizing each car using observable characteristics, therefore, the order statistic method can be used to gather the underlying distribution of buyer values for each car.

On the seller side, it is the secret reserve price that really helps us estimate the bargaining game. If the post-auction bargaining never results in a price lower than the last bid, then bidders have a dominant strategy to bid truthfully. Costly bargaining in addition to truthful bidding by buyers means that the optimal seller reserve price must be strictly increasing in the seller’s type. And what does strict monotonicity give us? Invertibility. We now know there is a link between the seller reserve price and the seller type. The structure of post-auction bargaining helps us to bound the relationship between seller type and the reserve. Finally, multiple rounds of bargaining let us bound the disutility costs of bargaining, which turn out to be quite small.

So how does the auto auction bargaining mechanism do? In this market, given the estimated type distributions, the Myerson-Satterthwaite second-best gives you 98% of the surplus of a first-best (informationally impossible) mechanism. Real-world dynamic bargaining captures 88-96% of that second-best surplus, with the most inefficiency coming from small sellers where, perhaps, screening problems result. That’s still leaving money on the table, though. Larsen, among others, suggests that these types of strange dynamic mechanisms may persist because in two-sided markets, they roughly are equivalent to committing to giving buyers a large chunk of the gains from trade, and we know that attracting additional potential buyers is the most important part of successful auctions.

January 2013 working paper (No IDEAS version).

“Long Cheap Talk,” R. Aumann & S. Hart (2003)

I wonder if Crawford and Sobel knew just what they were starting when they wrote their canonical cheap talk paper – it is incredible how much more we know about the value of cheap communication even when agents are biased. Most importantly, it is not true that bias or self-interest means we must always require people to “put skin in the game” or perform some costly action in order to prove the true state of their private information. A colleague passed along this paper by Aumann and Hart which addresses a question that has long bedeviled students of repeated games: why don’t they end right away? (And fair notice: we once had a full office shrine, complete with votive candles, to Aumann, he of the antediluvian beard and two volume tome, so you could say we’re fans!)

Take a really simple cheap talk game, where only one agent has any useful information. Row knows what game we are playing, and Column only knows the probability distribution of such games. In the absence of conflict (say, where there are two symmetric games, each of which has one Pareto optimal equilibrium), Row first tells Column that which game is the true one, this is credible, and so Column plays the Pareto optimal action. In other cases, we know from Crawford-Sobel logic that partial revelation may be useful even when there are conflicts of interest: Row tells Column with some probability what the true game is. We can also create new equilibria by using talk to reach “compromise”. Take a Battle of the Sexes, with LL payoff (6,2), RR (2,6) and LR=RL=(0,0). The equilibria of the simultaneous game without cheap talk are LL,RR, or randomize 3/4 on your preferred location and 1/4 of the opponent’s preferred location. But a new equilibria is possible if we can use talk to create a public randomization device. We both write down 1 or 2 on a piece of paper, then show the papers to each other. If the sum is even, we both go LL. If the sum is odd, we both then go RR. This gives ex-ante payoff (4,4), which is not an equilibrium payoff without the cheap talk.

So how do multiple rounds help us? They allow us to combine these motives for cheap talk. Take an extended Battle of the Sexes, with a third action A available to Column. LL still pays off (6,2), RR still (2,6) and LR=RL=(0,0). RA or LA pays off (3,0). Before we begin play, we may be playing extended Battle of the Sexes, or we may be playing a game Last Option that pays off 0 to both players unless Column plays A, in which case both players get 4; both games are equally probable ex-ante, and only Row learns which game we actually in. Here, we can enforce a payoff of (4,4) if, when the game is actually extended Battle of the Sexes, we randomize between L and R as in the previous paragraph, but if the game is Last Option, Column always plays A. But the order in which we publicly randomize and reveal information matters! If we first randomize, then reveal which game we are playing, then whenever the public randomization causes us to play RR (giving row player a payoff of 2 in Battle of the Sexes), Row will afterwards have the incentive to claim we are actually playing Last Resort. But if Row first reveals which game we are playing, and then we randomize if we are playing extended Battle of the Sexes, we indeed enforce ex-ante expected payoff (4,4).

Aumann and Hart show precisely what can be achieved with arbitrarily long strings of cheap talk, using a clever geometric proof which is far too complex to even summarize here. But a nice example of how really long cheap talk of this fashion can be used is in a paper by Krishna and Morgan called The Art of Conversation. Take a standard Crawford-Sobel model. The true state of the world is drawn uniformly from [0,1]. I know the true state, and get utility which is maximized when you take action on [0,1] as close as possible to the true state of the world plus .1. Your utility is maximized when you take action as close as possible to the true state of the world. With this “bias”, there is a partially informative one-shot cheap talk equilibrium: I tell you whether we are in [0,.3] or [.3,1] and you in turn take action either .15 or .65. How might we do better with a string of cheap talk? Try the following: first I tell you whether we are in [0,.2] or [.2,1]. If I say we are in the low interval, you take action .1. If I say we are in the high interval, we perform a public randomization which ends the game (with you taking action .6) with probability 4/9 and continues the game with probability 5/9; for example, to publicly randomize we might both shout out numbers between 1 and 9, and if the difference is 4 or less, we continue. If we continue, I tell you whether we are in [.2,.4] or [.4,1]. If I say [.2,.4], you take action .3, else you take action .7. It is easy to calculate that both players are better off ex-ante that in the one-shot cheap talk game. The probabilities 4/9 and 5/9 were chosen so as to make each player indifferent from following the proposed equilibrium after the randomization or not.

The usefulness of the lotteries interspersed with the partial revelation are to let the sender credibly reveal more information. If there were no lottery, but instead we always continued with probability 1, look at what happens when the true state of nature is .19. The sender knows he can say in the first revelation that, actually, we are on [.2,1], then in the second revelation that, actually, we are on [.2,4], in which case the receiver plays .3 (which is almost exactly sender’s ideal point .29). Hence without the lotteries, the sender has an incentive to lie at the first revelation stage. That is, cheap talk can serve to give us jointly controlled lotteries in between successive revelation of information, and in so doing, improve our payoffs.

Final published Econometrica 2003 copy (IDEAS). Sequential cheap talk has had many interesting uses. I particularly enjoyed this 2008 AER by Alonso, Dessein and Matouschek. The gist is the following: it is often thought that the tradeoff between decentralized firms and centralized firms is more local control in exchange for more difficult coordination. But think hard about what information will be transmitted by regional managers who only care about their own division’s profits. As coordination becomes more important, the optimal strategy in my division is more closely linked to the optimal decision in other divisions. Hence I, the regional manager, have a greater incentive to freely share information with other regional managers than in the situation where coordination is less important. You may prefer centralized decision-making when cooperation is least important because this is when individual managers are least likely to freely share useful information with each other.

“The Nash Bargaining Solution in Economic Modeling,” K. Binmore, A. Rubinsten & A. Wolinsky (1986)

If we form a joint venture, our two firms will jointly earn a profit of N dollars. If our two countries agree to this costly treaty, total world welfare will increase by the equivalent of N dollars. How should we split the profit in the joint venture case, or the costs in the case of the treaty? There are two main ways of thinking about this problem: the static bargaining approach developed first by John Nash, and bargaining outcomes that form the perfect outcome of a strategic game, for which Rubinstein (1982) really opened the field.

The Nash solution says the following. Let us have some pie of size 1 to divide. Let each of us have a threat point, S1 and S2. Then if certain axioms are followed (symmetry, invariance to unimportant transformations of the utility function, Pareto optimality and something called the IIA condition), the bargain is the one that maximizes (u1(p)-u1(S1))*(u2(1-p)-u2(S2)), where p is the share of the pie of size 1 that accrues to player 1. So if we both have linear utility, player 1 can leave and collect .3, and player 2 can leave and collect 0, but a total of 1 is earned by our joint venture, the Nash bargaining solution is the p that maximizes (p-.3)*(1-p-0); that is, p=.65. This is pretty intuitive: 1-.3-0=.7 of surplus is generated by the joint venture, and we each get our outside option plus half of that surplus.

The static outcome is not very compelling, however, as Tom Schelling long ago pointed out. In particular, the outside option looks like a noncredible threat: If player 2 refused to offer player 1 more than .31, then Player 1 would accept given his outside option is only .3. That is, in a one-shot bargaining game, any p between .3 and 1 looks like an equilibrium. It is also not totally clear how we should interpret the utility functions u1 and u2, and the threat points S1 and S2.

Rubinstein bargaining began to fix this. Let players make offers back and forth, and let there be a time period D between each offer. If no agreement is reached after T periods, we both get our outside options. Under some pretty compelling axioms, there is a unique perfect equilibrium whereby player 1 gets p* if he makes the first offer, and p** if player 2 makes the first offer. Roughly, if the time between offers is D, player 1 must offer player 2 a high enough share that player 2 is indifferent between that share today and the amount he could earn when he makes an offer in the next period. Note that the outside options do not come into play unless, say, player 1’s outside option is higher than min{p*,p**}. Note also that as D goes to 0, all of the difference in bargaining power has to do with who is more patient. Binmore et al modify this game so that, instead of discounting the future, rather there is a small chance that the gains from negotiation will disappear (“breakdown”) in between every period; for instance, we may want to form a joint venture to invent some product, but while we negotiate, another firm may swoop in and invent it. It turns out that this model, with von Neumann-Morganstern utility functions for each player (though perhaps differing levels of risk aversion) is a special case of Rubinstein bargaining.

Binmore et al prove that as D goes to zero, both strategic cases above have unique perfect equilibria equal to a Nash bargaining solution. But a Nash solution for what utility functions and threat points? The Rubinstein game limits to Nash bargaining where the difference in utilities has to do with time preference, and the threat points S1 and S2 are equal to zero. The breakdown game limits to Nash bargaining where the difference in utilities has to do with risk aversion, and the threat points S1 and S2 are equal to whatever utility we would get from the world after breakdown.

Two important points: first, it was well known that a concave transformation of a utility function leads to a worse outcome in Nash bargaining for that player. But we know from the previous paragraph that this concave transformation is equivalent to a more impatient Rubinstein bargainer: a concave transformation of the utilities in the Nash outcome has to do with changing the patience, not the risk aversion, of players. Second, Schelling was right when he argued that the Nash threat points involve noncredible threats. As long as players prefer their Rubinstein equilibrium outcome to their outside option, the outside option does not matter for the bargaining outcome. Take the example above where one player could leave the joint venture and still earn .3. The limit of Rubinstein bargaining is for each player to earn .5 from the joint venture, not .65 and .35. The fact that one player could leave the joint venture and still earn .3 is totally inconsequential to the negotiation, since the other player knows that this threat is not credible whenever the first player could earn at least .31 by staying. This point is often wildly misunderstood when people apply Nash bargaining solutions: properly defining the threat point matters!

Final RAND version (IDEAS). There has been substantial work since the 80s on the problem of bargaining, particularly in trying to construct models where delay is generated, since Rubinstein guarantees agreement immediately and real-world bargaining rarely ends in one step; unsurprisingly, these newer papers tend to rely on difficult manipulation of theorems using asymmetric information.

Follow

Get every new post delivered to your Inbox.

Join 195 other followers

%d bloggers like this: