Paul Samuelson’s Contributions to Welfare Economics, K. Arrow (1983)

I happened to come across a copy of a book entitled “Paul Samuelson and Modern Economic Theory” when browsing the library stacks recently. Clear evidence of his incredible breadth are in the section titles: Arrow writes about his work on social welfare, Houthhaker on consumption theory, Patinkin on money, Tobin on fiscal policy, Merton on financial economics, and so on. Arrow’s chapter on welfare economics was particularly interesting. This book comes from the early 80s, which is roughly the end of social welfare as a major field of study in economics. I was never totally clear on the reason for this – is it simply that Arrow’s Possibility Theorem, Sen’s Liberal Paradox, and the Gibbard-Satterthwaite Theorem were so devastating to any hope of “general” social choice rules?

In any case, social welfare is today little studied, but Arrow mentions a number of interesting results which really ought be better known. Bergson-Samuelson, conceived when the two were in graduate school together, is rightfully famous. After a long interlude of confused utilitarianism, Pareto had us all convinced that we should dismiss cardinal utility and interpersonal utility comparisons. This seems to suggest that all we can say about social welfare is that we should select a Pareto-optimal state. Bergson and Samuelson were unhappy with this – we suggest individuals should have preferences which represent an order (complete and transitive) over states, and the old utilitarians had a rule which imposed a real number for society’s value of any state (hence an order). Being able to order states from a social point of view seems necessary if we are to make decisions. Some attempts to extend Pareto did not give us an order. (Why is an order important? Arrow does not discuss this, but consider earlier attempts at extending Pareto like Kaldor-Hicks efficiency: going from state s to state s’ is KH-efficient if there exist ex-post transfers under which the change is Paretian. Let person a value the bundle (1,1)>(2,0)>(1,0)>all else, and person b value the bundle (1,1)>(0,2)>(0,1)>all else. In state s, person a is allocated (2,0) and person b (0,1). In state s’, person a is allocated (1,0) and person b is allocated (0,2). Note that going from s to s’ is a Kaldor-Hicks improvement, but going from s’ to s is also a Kaldor-Hicks improvement!)

Bergson and Samuelson wanted to respect individual preferences – society can’t prefer s to s’ if s’ is a Pareto improvement on s in the individual preference relations. Take the relation RU. We will say that sRUs’ if all individuals weakly prefer s to s’. Not that though RU is not complete, it is transitive. Here’s the great, and non-obvious, trick. The Polish mathematician Szpilrajn has a great 1930 theorem which says that if R is a transitive relation, then there exists a complete relation R2 which extends R; that is, if sRs’ then sR2s’, plus we complete the relation by adding some more elements. This is not a terribly easy proof, it turns out. That is, there exists social welfare orders which are entirely ordinal and which respect Pareto dominance. Of course, there may be lots of them, and which you pick is a problem of philosophy more than economics, but they exist nonetheless. Note why Arrow’s theorem doesn’t apply: we are starting with given sets of preferences and constructing a social preference, rather than attempting to find a rule that maps any individual preferences into a social rule. There have been many papers arguing that this difference doesn’t matter, so all I can say is that Arrow himself, in this very essay, accepts that difference completely. (One more sidenote here: if you wish to start with individual utility functions, we can still do everything in an ordinal way. It is not obvious that every indifference map can be mapped to a utility function, and not even true without some type of continuity assumption, especially if we want the utility functions to themselves be continuous. A nice proof of how we can do so using a trick from probability theory is in Neuefeind’s 1972 paper, which was followed up in more generality by Mount and Reiter here at MEDS then by Chichilnisky in a series of papers. Now just sum up these mapped individual utilities, and I have a Paretian social utility function which was constructed entirely in an ordinal fashion.)

Now, this Bergson-Samuelson seems pretty unusable. What do we learn that we don’t know from a naive Pareto property? Here are two great insights. First, choose any social welfare function from the set we have constructed above. Let individuals have non-identical utility functions. In general, there is no social welfare function which is maximized by always keeping every individual’s income identical in all states of the world! The proof of this is very easy if we use Harsanyi’s extension of Bergson-Samuelson: if agents are Expected Utility maximizers, than any B-S social welfare function can be written as the weighted linear combination of individual utility functions. As relative prices or the social production possibilities frontier changes, the weights are constant, but the individual marginal utilities are (generically) not. Hence if it was socially optimal to endow everybody with equal income before the relative price change, it (generically) is not later, no matter which Pareto-respecting measure of social welfare your society chooses to use! That is, I think, an astounding result for naive egalitarianism.

Here’s a second one. Surely any good economist knows policies should be evaluated according to cost-benefit analysis. If, for instance, the summed willingness-to-pay for a public good exceeds the cost of the public good, then society should buy it. When, however, does a B-S social welfare function allow us to make such an inference? Generically, such an inference is only possible if the distribution of income is itself socially optimal, since willingness-to-pay depends on the individual budget constraints. Indeed, even if demand estimation or survey evidence suggests that there is very little willingness-to-pay for a public good, society may wish to purchase the good. This is true even if the underlying basis for choosing the particular social welfare function we use has nothing at all to do with equity, and further since the B-S social welfare function respects individual preferences via the Paretian criterion, the reason we build the public good also has nothing to do with paternalism. Results of this type are just absolutely fundamental to policy analysis, and are not at all made irrelevant by the impossibility results which followed Arrow’s theorem.

This is a book chapter, so I’m afraid I don’t have an online version. The book is here. Arrow is amazingly still publishing at the age of 91; he had an interesting article with the underrated Partha Dasgupta in the EJ a couple years back. People claim that relative consumption a la Veblen matters in surveys. Yet it is hard to find such effects in the data. Why is this? Assume I wish to keep up with the Joneses when I move to a richer place. If I increase consumption today, I am decreasing savings, which decreases consumption even more tomorrow. How my desire to change consumption today if I have richer peers then depends on that dynamic tradeoff, which Arrow and Dasgupta completely characterize.

Advertisement
%d bloggers like this: