“Agricultural Productivity and Structural Change: Evidence from Brazil,” P. Bustos et al (2014)

It’s been a while – a month of exploration in the hinterlands of the former Soviet Union, a move up to Canada, and a visit down to the NBER Summer Institute really put a cramp on my posting schedule. That said, I have a ridiculously long backlog of posts to get up, so they will be coming rapidly over the next few weeks. I saw today’s paper presented a couple days ago at the Summer Institute. (An aside: it’s a bit strange that there isn’t really any media at SI – the paper selection process results in a much better set of presentations than at the AEA or the Econometric Society, which simply have too long of a lag from the application date to the conference, and too many half-baked papers.)

Bustos and her coauthors ask, when can improvements in agricultural productivity help industrialization? An old literature assumed that any such improvement would help: the newly rich agricultural workers would demand more manufactured goods, and since manufactured and agricultural products are complements, rising agricultural productivity would shift workers into the factories. Kiminori Matsuyama wrote a model (JET 1992) showing the problem here: roughly, if in a small open economy productivity goes up in a good you have a Ricardian comparative advantage in, then you want to produce even more of that good. A green revolution which doubles agricultural productivity in, say, Mali, while keeping manufacturing productivity the same, will allow Mali to earn twice as much selling the agriculture overseas. Workers will then pour into the agricultural sector until the marginal product of labor is re-equated in both sectors.

Now, if you think that industrialization has a bunch of positive macrodevelopment spillovers (via endogenous growth, population control or whatever), then this is worrying. Indeed, it vaguely suggests that making villages more productive, an outright goal of a lot of RCT-style microdevelopment studies, may actually be counterproductive for the country as a whole! That said, there seems to be something strange going on empirically, because we do appear to see industrialization in countries after a Green Revolution. What could be going on? Let’s look back at the theory.

Implicitly, the increase in agricultural productivity in Matsuyama was “Hicks-neutral” – it increased the total productivity of the sector without affecting the relative marginal factor productivities. A lot of technological change, however, is factor-biased; to take two examples from Brazil, modern techniques that allow for double harvesting of corn each year increase the marginal productivity of land, whereas “Roundup Ready” GE soy that requires less tilling and weeding increases the marginal productivity of farmers. We saw above that Hicks-neutral technological change in agriculture increases labor in the farm sector: workers choosing where to work means that the world price of agriculture times the marginal product of labor in that sector must be equal to world price of manufacturing times the marginal product of labor in manufacturing. A Hicks-neutral improvement in agricultural productivity raises MPL in that sector no matter how much land or labor is currently being used, hence wage equality across sectors requires workers to leave the factor for the farm.

What of biased technological change? As before, the only thing we need to know is whether the technological change increases the marginal product of labor. Land-augmenting technical change, like double harvesting of corn, means a country can produce the same amount of output with the old amount of farm labor and less land. If one more worker shifts from the factory to the farm, she will be farming less marginal land than before the technological change, hence her marginal productivity of labor is higher than before the change, hence she will leave the factory. Land-augmenting technological change always increases the amount of agricultural labor. What about farm-labor-augmenting technological change like GM soy? If land and labor are not very complementary (imagine, in the limit, that they are perfect substitutes in production), then trivially the marginal product of labor increases following the technological change, and hence the number of farm workers goes up. The situation is quite different if land and farm labor are strong complements. Where previously we had 1 effective worker per unit of land, following the labor-augmenting technology change it is as if we have, say, 2 effective workers per unit of land. Strong complementarity implies that, at that point, adding even more labor to the farms is pointless: the marginal productivity of labor is decreasing in the technological level of farm labor. Therefore, labor-augmenting technology with a strongly complementary agriculture production function shifts labor off the farm and into manufacturing.

That’s just a small bit of theory, but it really clears things up. And even better, the authors find empirical support for this idea: following the introduction to Brazil of labor-augmenting GM soy and land-augmenting double harvesting of maize, agricultural productivity rose everywhere, the agricultural employment share rose in areas that were particularly suitable for modern maize production, and the manufacturing employment share rose in areas that were particularly suitable for modern soy production.

August 2013 working paper. I think of this paper as a nice complement to the theory and empirics in Acemoglu’s Directed Technical Change and Walker Hanlon’s Civil War cotton paper. Those papers ask how changes in factor prices endogenously affect the development of different types of technology, whereas Bustos and coauthors ask how the exogenous development of different types of technology affect the use of various factors. I read the former as most applicable to structural change questions in countries at the technological frontier, and the latter as appropriate for similar questions in developing countries.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: