“Why Did Universities Start Patenting?: Institution Building and the Road to the Bayh-Dole Act,” E. P. Berman (2008)

It goes without saying that the Bayh-Dole Act had huge ramifications for science in the United States. Passed in 1980, Bayh-Dole permitted (indeed, encouraged) universities to patent the output of federally-funded science. I think the empirical evidence is still not complete on whether this increase in university patenting has been good (more, perhaps, incentive to develop products based on university research), bad (patents generate static deadweight loss, and exclusive patent licenses limit future developers) or “worse than the alternative” (if the main benefit of Bayh-Dole is encouraging universities to promote their research to the private sector, we can achieve that goal without the deadweight loss of patents).

As a matter of theory, however, it’s hard for me to see how university patenting could be beneficial. The usual static tradeoff with patents is deadweight loss after the product is developed in exchange for the quasirents that incentivize fixed costs of research to be paid by the initial developer. With university research, you don’t even get that benefit, since the research is being done anyway. This means you have to believe the “increased incentive for someone to commercialize” under patents is enough to outweight the static deadweight loss; it is not even clear that there is any increased incentive in the first place. Scientists seem to understand what is going on: witness the license manager of the enormously profitable Cohen-Boyer recombinant DNA patent, “[W]hether we licensed it or not, commercialisation of recombinant DNA was going forward. As I mentioned, a non-exclusive licensing program, at its heart, is really a tax … [b]ut it’s always nice to say technology transfer.” That is, it is clear why cash-strapped universities like Bayh-Dole regardless of the social benefit.

In today’s paper, Elizabeth Popp Berman, a sociologist, poses an interesting question. How did Bayh-Dole ever pass given the widespread antipathy toward “locking up the results of public research” in the decades before its passage? She makes two points of particular interest. First, it’s not obvious that there is any structural break in 1980 in university patenting, as university patents increased 250% in the 12 years before the Act and about 300% in the 12 years afterward. Second, this pattern holds because the development of institutions and interested groups necessary for the law to change was a fairly continuous process beginning perhaps as early as the creation of the Research Corporation in 1912. What this means for economists is that we should be much more careful about seeing changes in law as “exogenous” since law generally just formalized already changing practice, and that our understanding of economic events driven by rational agents acting under constraints ought sometimes focus more on the constraints and how they develop rather than the rational action.

Here’s the history. Following World War II, the federal government became a far more important source of funding for university and private-sector science in the United States. Individual funding agencies differed in their patent policy; for instance, the Atomic Energy Commission essentially did not allow university scientists to patent the output of federally-funded research, whereas the Department of Defense permitted patents from their contactors. Patents were particularly contentious since over 90% of federal R&D in this period went to corporations rather than universities. Through the 1960s, the NIH began to fund more and more university science, and they hired a patent attorney in 1963, Norman Latker, who was very much in favor of private patent rights.

Latker received support for his position from two white papers published in 1968 that suggested the HEW (the parent of the NIH) was letting medical research languish because they wouldn’t grant exclusive licenses to pharma firms, who in turn argued that without the exclusive license they wouldn’t develop the research into a product. The politics of this report allowed Latker enough bureaucratic power to freely develop agreements with individual universities allowing them to retain patents in some cases. The rise of these agreements led many universities to hire patent officers, who would later organize into a formal lobbying group pushing for more ability to patent federally-funded research. Note essentially what is going on: individual actors or small groups take actions in each period which change the payoffs to future games (partly by incurring sunk costs) or by introducing additional constraints (reports that limit the political space for patent opponents, for example). The eventual passage of Bayh-Dole, and its effects, necessarily depend on that sort of institution building which is often left unmodeled in economic or political analysis. Of course, the full paper has much more detail about how this program came to be, and is worth reading in full.

Final version in Social Studies of Science (gated). I’m afraid I could not find an ungated copy.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: