Kenneth Arrow Part II: The Theory of General Equilibrium

The first post in this series discussed Ken Arrow’s work in the broad sense, with particular focus on social choice. In this post, we will dive into his most famous accomplishment, the theory of general equilibrium (1954, Econometrica). I beg the reader to offer some sympathy for the approximations and simplifications that will appear below: the history of general equilibrium is, by this point, well-trodden ground for historians of thought, and the interpretation of history and theory in this area is quite contentious.

My read of the literature on GE following Arrow is as follows. First, the theory of general equilibrium is an incredible proof that markets can, in theory and in certain cases, work as efficiently as an all-powerful planner. That said, the three other hopes of general equilibrium theory since the days of Walras are, in fact, disproven by the work of Arrow and its followers. Market forces will not necessarily lead us toward these socially optimal equilibrium prices. Walrasian demand does not have empirical content derived from basic ordinal utility maximization. We cannot rigorously perform comparative statics on general equilibrium economic statistics without assumptions that go beyond simple utility maximization. From my read of Walras and the early general equilibrium theorists, all three of those results would be a real shock.

Let’s start at the beginning. There is an idea going back to Adam Smith and the invisible hand, an idea that individual action will, via the price system, lead to an increase or even maximization of economic welfare (an an aside, Smith’s own use of “invisible hand” trope is overstated, as William Grampp among others has convincingly argued). The kind of people who denigrate modern economics – the neo-Marxists, the back-of-the-room scribblers, the wannabe-contrarian-dilletantes – see Arrow’s work, and the idea of using general equilibrium theory to “prove that markets work”, as a barbarism. We know, and have known well before Arrow, that externalities exist. We know, and have known well before Arrow, that the distribution of income depends on the distribution of endowments. What Arrow was interested in was examining not only whether the invisible hand argument “is true, but whether it could be true”. That is, if we are to claim markets are uniquely powerful at organizing economic activity, we ought formally show that the market could work in such a manner, and understand the precise conditions under which it won’t generate these claimed benefits. How ought we do this? Prove the precise conditions under which there exists a price vector where markets clear, show the outcome satisfies some welfare criterion that is desirable, and note exactly why each of the conditions are necessary for such an outcome.

The question is, how difficult is it to prove these prices exist? The term “general equilibrium” has had many meanings in economics. Today, it is often used to mean “as opposed to partial equilibrium”, meaning that we consider economic effects allowing all agents to adjust to a change in the environment. For instance, a small random trial of guaranteed incomes has, as its primary effect, an impact on the incomes of the recipients; the general equilibrium effects of making such a policy widespread on the labor market will be difficult to discern. In the 19th and early 20th century, however, the term was much more concerned with the idea of the economy as a self-regulating system. Arrow put it very nicely in an encyclopedia chapter he wrote in 1966: general equilibrium is both “the simple notion of determinateness, that the relations which describe the economic system must form a system sufficiently complete to determine the values of its variables and…the more specific notion that each relation represents a balance of forces.”

If you were a classical, a Smith or a Marx or a Ricardo, the problem of what price will obtain in a market is simple to solve: ignore demand. Prices are implied by costs and a zero profit condition, essentially free entry. And we more or less think like this now in some markets. With free entry and every firm producing at the identical minimum efficient scale, price is entirely determined by the supply side, and only quantity is determined by demand. With one factor, labor where the Malthusian condition plays the role of free entry, or labor and land in the Ricardian system, this classical model of value is well-defined. How to handle capital and differentiated labor is a problem to be assumed away, or handled informally; Samuelson has many papers where he is incensed by Marx’s handling of capital as embodied labor.

The French mathematical economist Leon Walras finally cracked the nut by introducing demand and price-taking. There are household who produce and consume. Equilibrium involves supply and demand equating in each market, hence price is where margins along the supply and demand curves equate. Walras famously (and informally) proposed a method by which prices might actually reach equilibrium: the tatonnement. An auctioneer calls out a price vector: in some markets there is excess demand and in some excess supply. Prices are then adjusted one at a time. Of course each price change will affect excess demand and supply in other markets, but you might imagine things can “converge” if you adjust prices just right. Not bad for the 1870s – there is a reason Schumpeter calls this the “Magna Carta” of economic theory in his History of Economic Analysis. But Walras was mistaken on two counts: first, knowing whether there even exists an equilibrium that clears every market simultaneously is, it turns out, equivalent to a problem in Poincare’s analysis situs beyond the reach of mathematics in the 19th century, and second, the conditions under which tatonnement actually converges are a devilish problem.

The equilibrium existence problem is easy to understand. Take the simplest case, with all j goods made up of the linear combination of k factors. Demand equals supply just says that Aq=e, where q is the quantity of each good produced, e is the endowment of each factor, and A is the input-output matrix whereby product j is made up of some combination of factors k. Also, zero profit in every market will imply Ap(k)=p(j), where p(k) are the factor prices and p(j) the good prices. It was pointed out that even in this simple system where everything is linear, it is not at all trivial to ensure that prices and quantities are not negative. It would not be until Abraham Wald in the mid-1930s – later Arrow’s professor at Columbia and a fellow Romanian, links that are surely not a coincidence! – that formal conditions were shown giving existence of general equilibrium in a simple system like this one, though Wald’s proof greatly simplified by the general problem by imposing implausible restrictions on aggregate demand.

Mathematicians like Wald, trained in the Vienna tradition, were aghast at the state of mathematical reasoning in economics at the time. Oskar Morgenstern absolutely hammered the great economist John Hicks in a 1941 review of Hicks’ Value and Capital, particularly over the crazy assertion (similar to Walras!) that the number of unknowns and equations being identical in a general equilibrium system sufficed for a solution to exist (if this isn’t clear to you in a nonlinear system, a trivial example with two equations and two unknowns is here). Von Neumann apparently said (p. 85) to Oskar, in reference to Hicks and those of his school, “if those books are unearthed a hundred years hence, people will not believe they were written in our time. Rather they will think they are about contemporary with Newton, so primitive is the mathematics.” And Hicks was quite technically advanced compared to his contemporary economists, bringing the Keynesian macroeconomics and the microeconomics of indifference curves and demand analysis together masterfully. Arrow and Hahn even credit their initial interest in the problems of general equilibrium to the serendipity of coming across Hicks’ book.

Mathematics had advanced since Walras, however, and those trained at the mathematical frontier finally had the tools to tackle Walras’ problem seriously. Let D(p) be a vector of demand for all goods given price p, and e be initial endowments of each good. Then we simply need D(p)=e or D(p)-e=0 in each market. To make things a bit harder, we can introduce intermediate and factor goods with some form of production function, but the basic problem is the same: find whether there exists a vector p such that a nonlinear equation is equal to zero. This is the mathematics of fixed points, and Brouwer had, in 1912, given a nice theorem: every continuous function from a compact convex subset to itself has a fixed point. Von Neumann used this in the 1930s to prove a similar result to Wald. A mathematician named Shizuo Kakutani, inspired by von Neumann, extended the Brouwer result to set-valued mappings called correspondences, and John Nash in 1950 used that result to show, in a trivial proof, the existence of mixed equilibria in noncooperative games. The math had arrived: we had the tools to formally state when non-trivial non-linear demand and supply systems had a fixed point, and hence a price that cleared all markets. We further had techniques for handling “corner solutions” where demand for a given good was zero at some price, surely a common outcome in the world: the idea of the linear program and complementary slackness, and its origin in convex set theory as applied to the dual, provided just the mathematics Arrow and his contemporaries would need.

So here we stood in the early 1950s. The mathematical conditions necessary to prove that a set-valued function has an equilibrium have been worked out. Hicks, in Value and Capital, has given Arrow the idea that relating the future to today is simple: just put a date on every commodity and enlarge the commodity space. Indeed, adding state-contingency is easy: put an index for state in addition to date on every commodity. So we need not only zero excess demand in apples, or in apples delivered in May 1955, but in apples delivered in May 1955 if Eisenhower loses his reelection bid. Complex, it seems, but no matter: the conditions for the existence of a fixed point will be the same in this enlarged commodity space.

With these tools in mind, Arrow and Debreu can begin their proof. They first define a generalization of an n-person game where the feasible set of actions for each player depends on the actions of every other player; think of the feasible set as “what can I afford given the prices that will result for the commodities I am endowed with?” The set of actions is an n-tuple where n is the number of date and state indexed commodities a player could buy. Debreu showed in 1952 PNAS that these generalized games have an equilibrium as long as each payoff function varies continuously with other player’s actions, the feasible set of choices convex and varies continuously in other player’s actions, and the set of actions which improve a player’s payoff are convex for every action profile. Arrow and Debreu then show that the usual implications on individual demand are sufficient to aggregate up to the conditions Debreu’s earlier paper requires. This method is much, much different from what is done by McKenzie or other early general equilibrium theorists: excess demand is never taken as a primitive. This allows the Arrow-Debreu proof to provide substantial economic intuition as Duffie and Sonnenschein point out in a 1989 JEL. For instance, showing that the Arrow-Debreu equilibrium exists even with taxation is trivial using their method but much less so in methods that begin with excess demand functions.

This is already quite an accomplishment: Arrow and Debreu have shown that there exists a price vector that clears all markets simultaneously. The nature of their proof, as later theorists will point out, relies less on convexity on preferences and production sets as on the fact that every agent is “small” relative to the market (convexity is used to get continuity in the Debreu game, and you can get this equally well by making all consumers infinitesimal and then randomizing allocations to smooth things out; see Duffie and Sonnenschein above for an example). At this point, it’s the mid-1950s, heyday of the Neoclassical synthesis: surely we want to be able to answer questions like, when there is a negative demand shock, how will the economy best reach a Pareto-optimal equilibrium again? How do different speeds of adjustment due to sticky prices or other frictions affect the rate at which optimal is regained? Those types of question implicitly assume that the equilibrium is unique (at least locally) so that we actually can “return” to where we were before the shock. And of course we know some of the assumptions needed for the Arrow-Debreu proof are unrealistic – e.g., no fixed costs in production – but we would at least like to work out how to manipulate the economy in the “simple” case before figuring out how to deal with those issues.

Here is where things didn’t work out as hoped. Uzawa (RESTUD, 1960) proved that not only could Brouwer’s theorem be used to prove the existence of general equilibrum, but that the opposite was true as well: the existence of general equilibrium was logically equivalent to Brouwer. A result like this certainly makes one worry about how much one could say about prices in general equilibrium. The 1970s brought us the Sonnenschein-Mantel-Debreu “Anything Goes” theorem: aggregate excess demand functions do not inherit all the properties of individual excess demand functions because of wealth effects (when relative prices change, the value of one’s endowment changes as well). For any aggregate excess demand function satisfying a couple minor restrictions, there exists an economy with individual preferences generating that function; in particular, fewer restrictions than are placed on individual excess demand as derived from individual preference maximization. This tells us, importantly, that there is no generic reason for equilibria to be unique in an economy.

Multiplicity of equilibria is a problem: if the goal of GE was to be able to take underlying primitives like tastes and technology, calculate “the” prices that clear the market, then examine how those prices change (“comparative statics”), we essentially lose the ability to do all but local comparative statics since large changes in the environment may cause the economy to jump to a different equilibrium (luckily, Debreu (1970, Econometrica) at least generically gives us a finite number of equilibria, so we may at least be able to say something about local comparative statics for very small shocks). Indeed, these analyses are tough without an equilibrium selection mechanism, which we don’t really have even now. Some would say this is no big deal: of course the same technology and tastes can generate many equilibria, just as cars may wind up all driving on either the left or the right in equilibrium. And true, all of the Arrow-Debreu equilibria are Pareto optimal. But it is still far afield from what might have been hoped for in the 1930s when this quest for a modern GE theory began.

Worse yet is stability, as Arrow and his collaborators (1958, Ecta; 1959, Ecta) would help discover. Even if we have a unique equilibrium, Herbert Scarf (IER, 1960) showed, via many simple examples, how Walrasian tatonnement can lead to cycles which never converge. Despite a great deal of the intellectual effort in the 1960s and 1970s, we do not have a good model of price adjustment even now. I should think we are unlikely to ever have such a theory: as many theorists have pointed out, if we are in a period of price adjustment and not in an equilibrium, then the zero profit condition ought not apply, ergo why should there be “one” price rather than ten or a hundred or a thousand?

The problem of multiplicity and instability for comparative static analysis ought be clear, but it should also be noted how problematic they are for welfare analysis. Consider the Second Welfare Theorem: under the Arrow-Debreu system, for every Pareto optimal allocation, there exists an initial endowment of resources such that that allocation is an equilibrium. This is literally the main justification for the benefits of the market: if we reallocate endowments, free exchange can get us to any Pareto optimal point, ergo can get us to any reasonable socially optimal point no matter what social welfare function you happen to hold. How valid is this justification? Call x* the allocation that maximizes some social welfare function. Let e* be an initial endowment for which x* is an equilibrium outcome – such an endowment must exist via Arrow-Debreu’s proof. Does endowing agents with e* guarantee we reach that social welfare maximum? No: x* may not be unique. Even if it unique, will we reach it? No: if it is not a stable equilibrium, it is only by dint of luck that our price adjustment process will ever reach it.

So let’s sum up. In the 1870s, Walras showed us that demand and supply, with agents as price takers, can generate supremely useful insights into the economy. Since demand matters, changes in demand in one market will affect other markets as well. If the price of apples rises, demand for pears will rise, as will their price, whose secondary effect should be accounted for in the market for apples. By the 1930s we have the beginnings of a nice model of individual choice based on constrained preference maximization. Taking prices as given, individual demands have well-defined forms, and excess demand in the economy can be computed by a simple summing up. So we now want to know: is there in fact a price that clears the market? Yes, Arrow and Debreu show, there is, and we needn’t assume anything strange about individual demand to generate this. These equilibrium prices always give Pareto optimal allocations, as had long been known, but there also always exist endowments such that every Pareto optimal allocation is an equilibria. It is a beautiful and important result, and a triumph for the intuition of the invisible hand it its most formal sense.

Alas, it is there we reach a dead end. Individual preferences alone do not suffice to tell us what equilibria we are at, nor that any equilibria will be stable, nor that any equilibria will be reached by an economically sensible adjustment process. To say anything meaningful about aggregate economic outcomes, or about comparative statics after modest shocks, or about how technological changes change price, we need to make assumptions that go beyond individual rationality and profit maximization. This is, it seems to me, a shock for the economists of the middle of the century, and still a shock for many today. I do not think this means “general equilibrium is dead” or that the mathematical exploration in the field was a waste. We learned a great deal about precisely when markets could even in principle achieve the first best, and that education was critical for the work Arrow would later do on health care, innovation, and the environment, which I will discuss in the next two posts. And we needn’t throw out general equilibrium analysis because of uniqueness or stability problems, any more than we would throw out game theoretic analysis because of the same problems. But it does mean that individual rationality as the sole paradigm of economic analysis is dead: it is mathematically proven that postulates of individual rationality will not allow us to say anything of consequence about economic aggregates or game theoretic outcomes in the frequent scenarios where we do not have a unique equilibria with a well-defined way to get there (via learning in games, or a tatonnament process in GE, or something of a similar nature). Arrow himself (1986, J. Business) accepts this: “In the aggregate, the hypothesis of rational behavior has in general no implications.” This is an opportunity for economists, not a burden, and we still await the next Arrow who can guide us on how to proceed.

Some notes on the literature: For those interested in the theoretical development of general equilibrium, I recommend General Equilibrium Analysis by Roy Weintraub, a reformed theorist who now works in the history of thought. Wade Hands has a nice review of the neoclassical synthesis and the ways in which Keynesianism and GE analysis were interrelated. On the battle for McKenzie to be credited alongside Arrow and Debreu, and the potentially scandalous way Debreu may have secretly been responsible for the Arrow and Debreu paper being published first, see the fine book Finding Equilibrium by Weintraub and Duppe; both Debreu and McKenzie have particularly wild histories. Till Duppe, a scholar of Debreu, also has a nice paper in the JHET on precisely how Arrow and Debreu came to work together, and what the contribution of each to their famous ’54 paper was.

The Greatest Living Economist Has Passed Away: Notes on Kenneth Arrow Part I

It is amazing how quickly the titans of the middle of the century have passed. Paul Samuelson and his mathematization, Ronald Coase and his connection of law to economics, Gary Becker and his incorporation of choice into the full sphere of human behavior, John Nash and his formalization of strategic interaction, Milton Friedman and his defense of the market in the precarious post-war period, Robert Fogel and his cliometric revolution: the remaining titan was Kenneth Arrow, the only living economist who could have won a second Nobel Prize without a whit of complaint from the gallery. These figures ruled as economics grew from a minor branch of moral philosophy into the most influential, most prominent, and most advanced of the social sciences. It is hard to imagine our field will ever again have such a collection of scholars rise in one generation, and with the tragic news that Ken has now passed away as well, we have, with great sadness and great rapidity, lost the full set.

Though he was 95 years old, Arrow was still hard at work; his paper with Kamran Bilir and Alan Sorensen was making its way around the conference circuit just last year. And beyond incredible productivity, Arrow had a legendary openness with young scholars. A few years ago, a colleague and I were debating a minor point in the history of economic thought, one that Arrow had played some role in; with the debate deadlocked, it was suggested that I simply email the protagonist to learn the truth. No reply came; perhaps no surprise, given how busy he was and how unknown I was. Imagine my surprise when, two months letter, a large manila envelope showed up in my mailbox at Northwestern, with a four page letter Ken had written inside! Going beyond a simple answer, he patiently walked me through his perspective on the entire history of mathematical economics, the relative centrality of folks like Wicksteed and Edgeworth to the broader economic community, the work he did under Hotelling and the Cowles Commission, and the nature of formal logic versus price theory. Mind you, this was his response to a complete stranger.

This kindness extended beyond budding economists: Arrow was a notorious generator of petitions on all kinds of social causes, and remained so late in life, signing the Economists Against Trump that many of us supported last year. You will be hardpressed to find an open letter or amicus curiae, on any issue from copyright term extension to the use of nuclear weapons, which Arrow was unaware of. The Duke Library holds the papers of both Arrow and Paul Samuelson – famously they became brothers-in-law – and the frequency with which their correspondence involves this petition or that, with Arrow in general the instigator and Samuelson the deflector, is unmistakable. I recall a great series of letters where Arrow queried Samuelson as to who had most deserved the Nobel but had died too early to receive it. Arrow at one point proposed Joan Robinson, which sent Samuelson into convulsions. “But she was a communist! And besides, her theory of imperfect competition was subpar.” You get the feeling in these letters of Arrow making gentle comments and rejoinders while Samuelson exercises his fists in the way he often did when battling everyone from Friedman to the Marxists at Cambridge to (worst of all, for Samuelson) those who were ignorant of their history of economic thought. Their conversation goes way back: you can find in one of the Samuelson boxes his recommendation that the University of Michigan bring in this bright young fellow named Arrow, a missed chance the poor Wolverines must still regret!

Arrow is so influential, in some many areas of economics, that it is simply impossible to discuss his contributions in a single post. For this reason, I will break the post into four parts, with one posted each day this week. We’ll look at Arrow’s work in choice theory today, his work on general equilibrium tomorrow, his work on innovation on Thursday, and some selected topics where he made seminal contributions (the economics of the environment, the principal-agent problem, and the economics of health care, in particular) on Friday. I do not lightly say that Arrow was the greatest living economist, and in my reckoning second only to Samuelson for the title of greatest economist of all time. Arrow wrote the foundational paper of general equilibrium analysis, the foundational paper of social choice and voting, the foundational paper justifying government intervention in innovation, and the foundational paper in the economics of health care. His legacy is the greatest legacy possible for the mathematical approach pushed by the Cowles Commission, the Econometric Society, Irving Fisher, and the mathematician-cum-economist Harold Hotelling. And so it is there that we must begin.

Arrow was born in New York City, a CCNY graduate like many children of the Great Depression, who went on to study mathematics in graduate school at Columbia. Economics in the United States in the 1930s was not a particularly mathematical science. The formalism of von Neumann, the late-life theoretical conversion of Schumpeter, Samuelson’s Foundations, and the soft nests at Cowles and the Econometric Society were in their infancy.

The usual story is that Arrow’s work on social choice came out of his visit to RAND in 1948. But this misstates the intellectual history: Arrow’s actual encouragement comes from his engagement with a new form of mathematics, the expansions of formal logic beginning with people like Peirce and Boole. While a high school student, Arrow read Bertrand Russell’s text on mathematical logic, and was enthused with the way that set theory permitted logic to go well beyond the syllogisms of the Greeks. What a powerful tool for the generation of knowledge! His Senior year at CCNY, Arrow took the advanced course on relational logic taught by Alfred Tarski, where the eminent philosopher took pains to reintroduce the ideas of Charles Sanders Peirce, the greatest yet most neglected American philosopher. The idea of relations are familiar to economists: give some links between a set (i.e, xRy and yRz) and some properties to the relation (i.e., it is well-ordered), and you can then perform logical operations on the relation to derive further properties. Every trained economist sees an example of this when first learning about choice and utility, but of course things like “greater than” and “less than” are relations as well. In 1940, one would have had to be extraordinarily lucky to encounter this theory: Tarski’s own books were not even translated.

But what great training this would be! For Arrow joined a graudate program in mathematical statistics at Columbia, where one of the courses was taught by Hotelling from the economics department. Hotelling was an ordinalist, rare in those days, and taught his students demand theory from a rigorous basis in ordinal preferences. But what are these? Simply relations with certain properties! Combined with a statistician’s innate ability to write proofs using inequalities, Arrow greatly impressed Hotelling, and switched to a PhD in economics with inspiration in the then-new subfield on mathematical economics that Hotelling, Samuelson, and Hicks were helping to expand.

After his wartime service doing operation research related to weather and flight planning, and a two year detour into capital theory with little to show for it, Arrow took a visiting position at the Cowles Commission, a center of research in mathematical economics then at the University of Chicago. In 1948, Arrow spent the summer at RAND, still yet to complete his dissertation, or even to strike on a worthwhile idea. RAND in Santa Monica was the world center for applied game theory: philosophers, economists, and mathematicians prowled the halls working through the technical basics of zero-sum games, but also the application of strategic decision theory to problems of serious global importance. Arrow had been thinking about voting a bit, and had written a draft of a paper, similar to that of Duncan Black’s 1948 JPE, essentially suggesting that majority voting “works” when preferences are single-peaked; that is, if everyone can rank options from “left to right”, and simply differ on which point is their “peak” of preference, then majority voting reflects individual preferences in a formal sense. At RAND, the philosopher Olaf Helmer pointed out that a similar concern mattered in international relations: how are we to say that the Soviet Union or the United States have preferences? They are collections of individuals, not individuals themselves.

Right, Arrow agreed. But economists had thought about collective welfare, from Pareto to Bergson-Samuelson. The Bergson-Samuelson idea is simple. Let all individuals in society have preferences over states of the world. If we all prefer state A to state B, then the Pareto criterion suggests society should as well. Of course, tradeoffs are inevitable, so what are we to do? We could assume cardinal utility (e.g., “how much money are willing to be paid to accept A if you prefer B to A and society goes toward A?”) as in the Kaldor-Hicks criterion (though the technically minded will know that Kaldor-Hicks does not define an order on states of the world, so isn’t really great for social choice). But let’s assume all people have is their own ordinal utility, their own rank-order of states, an order that is naturally hard to compare across people. Let’s assume for some pairs we have Pareto dominance: we all prefer A to C, and Q to L, and Z to X, but for other pairs there is no such dominance. A great theorem due to the Polish mathematician Szpilrain, and I believe popularized among economists by Blackwell, says that if you have a quasiorder R that is transitive, then there exists an order R’ which completes it. In simple terms, if you can rank some pairs, and the pairs you do rank do not have any intransitivity, then you can generate a complete rankings of all pairs which respects the original incomplete ordering. Since individuals have transitive preferences, Pareto ranks are transitive, and hence we know there exist social welfare functions which “extend” Pareto. The implications of this are subtle: for instance, as I discuss in the link earlier in this paragraph, it implies that pure monetary egalitarianism can never be socially optimal even if the only requirement is to respect Pareto dominance.

So aren’t we done? We know what it means, via Bergson-Samuelson, for the Soviet Union to “prefer” X to Y. But alas, Arrow was clever and attacked the problem from a separate view. His view was to, rather than taking preference orderings of individuals as given and constructing a social ordering, to instead ask whether there is any mechanism for constructing a social ordering from arbitrary individual preferences that satisfies certain criteria. For instance, you may want to rule out a rule that says “whatever Kevin prefers most is what society prefers, no matter what other preferences are” (non-dictatorship). You may want to require Pareto dominance to be respected so that if everyone likes A more than B, A must be chosen (Pareto criterion). You may want to ensure that “irrelevant options” do not matter, so that if giving an option to choose “orange” in addition to “apple” and “pear” does not affect any individual’s ranking of apples and pears, then the orange option also oughtn’t affect society’s rankings of apples and pears (IIA). Arrow famously proved that if we do not restrict what types of preferences individuals may have over social outcomes, there is no system that can rank outcomes socially and still satisfy those three criteria. It has been known that majority voting suffers a problem of this sort since Condorcet in the 18th century, but the general impossibility was an incredible breakthrough, and a straightforward one once Arrow was equipped with the ideas of relational logic.

It was with this result, in the 1951 book-length version of the idea, that social choice as a field distinct from welfare economics really took off. It is a startling result in two ways. First, in pure political theory, it rather simply killed off two centuries of blather about what the “best” voting system was: majority rule, Borda counts, rank-order voting, or whatever you like, every system must violate one of the Arrow axioms. And indeed, subsequent work has shown that the axioms can be relaxed and still generate impossibility. In the end, we do need to make social choices, so what should we go with? If you’re Amartya Sen, drop the Pareto condition. Others have quibbled with IIA. The point is that there is no right answer. The second startling implication is that welfare economics may be on pretty rough footing. Kaldor-Hicks conditions, which in practice motivate all sorts of regulatory decisions in our society, both rely on the assumption of cardinal or interpersonally-comparable utility, and do not generate an order over social options. Any Bergson-Samuelson social welfare function, a really broad class, must violate some pretty natural conditions on how they treat “equivalent” people (see, e.g., Kemp and Ng 1976). One questions whether we are back in the pre-Samuelson state where, beyond Pareto dominance, we can’t say much with any rigor about whether something is “good” or “bad” for society without dictatorially imposing our ethical standard, individual preferences be damned. Arrow’s theorem is a remarkable achievement for a man as young as he was when he conceived it, one of those rare philosophical ideas that will enter the canon alongside the categorical imperative or Hume on induction, a rare idea that will without question be read and considered decades and centuries hence.

Some notes to wrap things up:

1) Most call the result “Arrow’s Impossibility Theorem”. After all, he did prove the impossibility of a certain form of social choice. But Tjalling Koopmans actually convinced Arrow to call the theorem a “Possibility Theorem” out of pure optimism. Proof that the author rarely gets to pick the eventual name!

2) The confusion between Arrow’s theorem and the existence of social welfare functions in Samuelson has a long and interesting history: see this recent paper by Herrada Igersheim. Essentially, as I’ve tried to make clear in this post, Arrow’s result does not prove that Bergson-Samuelson social welfare functions do not exist, but rather implicitly imposes conditions on the indifference curves which underlie the B-S function. Much more detail in the linked paper.

3) So what is society to do in practice given Arrow? How are we to decide? There is much to recommend in Posner and Weyl’s quadratic voting when preferences can be assumed to have some sort of interpersonally comparable cardinal structure, yet are unknown. When interpersonal comparisons are impossible and we do not know people’s preferences, the famous Gibbard-Satterthwaite Theorem says that we have no voting system that can avoid getting people to sometimes vote strategically. We might then ask, ok, fine, what voting or social choice system works “the best” (e.g., satisfies some desiderata) over the broadest possible sets of individual preferences? Partha Dasgupta and Eric Maskin recently proved that, in fact, good old fashioned majority voting works best! But the true answer as to the “best” voting system depends on the distribution of underlying preferences you expect to see – it is a far less simple question than it appears.

4) The conditions I gave above for Arrow’s Theorem are actually different from the 5 conditions in the original 1950 paper. The reason is that Arrow’s original proof is actually incorrect, as shown by Julian Blau in a 1957 Econometrica. The basic insight of the proof is of course salvageable.

5) Among the more beautiful simplifications of Arrow’s proof is Phil Reny’s “side by side” proof of Arrow and Gibbard-Satterthwaite, where he shows just how related the underlying logic of the two concepts is.

We turn to general equilibrium theory tomorrow. And if it seems excessive to need four days to cover the work on one man – even in part! – that is only because I understate the breadth of his contributions. Like Samuelson’s obscure knowledge of Finnish ministers which I recounted earlier this year, Arrow’s breadth of knowledge was also notorious. There is a story Eric Maskin has claimed to be true, where some of Arrow’s junior colleagues wanted to finally stump the seemingly all-knowing Arrow. They all studied the mating habits of whales for days, and then, when Arrow was coming down the hall, faked a vigorous discussion on the topic. Arrow stopped and turned, remaining silent at first. The colleagues had found a topic he didn’t fully know! Finally, Arrow interrupted: “But I thought Turner’s theory was discredited by Spenser, who showed that the supposed homing mechanism couldn’t possibly work”! And even this intellectual feat hardly matches Arrow’s well-known habit of sleeping through the first half of seminars, waking up to make the most salient point of the whole lecture, then falling back asleep again (as averred by, among others, my colleague Joshua Gans, a former student of Ken’s).

A Note on the Trump Immigration Policy

This site is seven years old, during which time I have not written a single post which is not explicitly about economics research. The posts have collectively reached well over a half million readers in this time, and I have been incredibly encouraged to see how many folks, even outside of academia, are interested in how economics, and economic theory in particular, can help explain the social world.

I hope you’ll permit me to take one post where I break the “economic research only” rule. The executive order issued yesterday banning entry into the United States for citizens of seven nations is an abomination, and directly contrary to both the words of Lazarus’ poem on the Statue of Liberty and the 1965 immigration reform which banned discrimination on the basis of national origin. It is an absolute disgrace, particularly to me as an American who, like the majority of my countrymen, see the immigrant experience as the greatest source of pride the country has to offer. Every academic, including myself, has friends and colleagues and coauthors from the countries included on this ban.

I understand that there are citizens of the affected countries worried about how their studies will be able to continue given these immigration restrictions. While my hope is that the courts will overturn this un-American executive order, I want our friends from these countries to know that there are currently plans in the works to assist you. If you are a economics or strategy student affected by this order, or have students in those fields who may need temporary academic accommodation elsewhere, please email me at kevin.bryan@rotman.utoronto.ca . This is of particular importance for students from the affected countries who are unable to return to the United States from present foreign travel. I can’t make any promises, but I have been in contact with a number of universities who may be able to help. If you are a PhD program director who may be able to help, I’d ask you to also contact me and I can keep you informed as to how things are progressing and how you can assist.

There is a troubling, nativist, anti-liberal (in the sense of Hume and Smith and Mill) streak in the world at the moment. The progress of knowledge depends on an open, free, and international system of cooperation. We in academia must stand up for this system, and for our friends who are being shut out of it.

Nobel Prize 2016 Part II: Oliver Hart

The Nobel Prize in Economics was given yesterday to two wonderful theorists, Bengt Holmstrom and Oliver Hart. I wrote a day ago about Holmstrom’s contributions, many of which are simply foundational to modern mechanism design and its applications. Oliver Hart’s contribution is more subtle and hence more of a challenge to describe to a nonspecialist; I am sure of this because no concept gives my undergraduate students more headaches than Hart’s “residual control right” theory of the firm. Even stranger, much of Hart’s recent work repudiates the importance of his most famous articles, a point that appears to have been entirely lost on every newspaper discussion of Hart that I’ve seen (including otherwise very nice discussions like Applebaum’s in the New York Times). A major reason he has changed his beliefs, and his research agenda, so radically is not simply the whims of age or the pressures of politics, but rather the impact of a devastatingly clever, and devastatingly esoteric, argument made by the Nobel winners Eric Maskin and Jean Tirole. To see exactly what’s going on in Hart’s work, and why there remains many very important unsolved questions in this area, let’s quickly survey what economists mean by “theory of the firm”.

The fundamental strangeness of firms goes back to Coase. Markets are amazing. We have wonderful theorems going back to Hurwicz about how competitive market prices coordinate activity efficiently even when individuals only have very limited information about how various things can be produced by an economy. A pencil somehow involves graphite being mined, forests being explored and exploited, rubber being harvested and produced, the raw materials brought to a factory where a machine puts the pencil together, ships and trains bringing the pencil to retail stores, and yet this decentralized activity produces a pencil costing ten cents. This is the case even though not a single individual anywhere in the world knows how all of those processes up the supply chain operate! Yet, as Coase pointed out, a huge amount of economic activity (including the majority of international trade) is not coordinated via the market, but rather through top-down Communist-style bureaucracies called firms. Why on Earth do these persistent organizations exist at all? When should firms merge and when should they divest themselves of their parts? These questions make up the theory of the firm.

Coase’s early answer is that something called transaction costs exist, and that they are particularly high outside the firm. That is, market transactions are not free. Firm size is determined at the point where the problems of bureaucracy within the firm overwhelm the benefits of reducing transaction costs from regular transactions. There are two major problems here. First, who knows what a “transaction cost” or a “bureaucratic cost” is, and why they differ across organizational forms: the explanation borders on tautology. Second, as the wonderful paper by Alchian and Demsetz in 1972 points out, there is no reason we should assume firms have some special ability to direct or punish their workers. If your supplier does something you don’t like, you can keep them on, or fire them, or renegotiate. If your in-house department does something you don’t like, you can keep them on, or fire them, or renegotiate. The problem of providing suitable incentives – the contracting problem – does not simply disappear because some activity is brought within the boundary of the firm.

Oliver Williamson, a recent Nobel winner joint with Elinor Ostrom, has a more formal transaction cost theory: some relationships generate joint rents higher than could be generated if we split ways, unforeseen things occur that make us want to renegotiate our contract, and the cost of that renegotiation may be lower if workers or suppliers are internal to a firm. “Unforeseen things” may include anything which cannot be measured ex-post by a court or other mediator, since that is ultimately who would enforce any contract. It is not that everyday activities have different transaction costs, but that the negotiations which produce contracts themselves are easier to handle in a more persistent relationship. As in Coase, the question of why firms do not simply grow to an enormous size is largely dealt with by off-hand references to “bureaucratic costs” whose nature was largely informal. Though informal, the idea that something like transaction costs might matter seemed intuitive and had some empirical support – firms are larger in the developing world because weaker legal systems means more “unforeseen things” will occur outside the scope of a contract, hence the differential costs of holdup or renegotiation inside and outside the firm are first order when deciding on firm size. That said, the Alchian-Demsetz critique, and the question of what a “bureaucratic cost” is, are worrying. And as Eric van den Steen points out in a 2010 AER, can anyone who has tried to order paper through their procurement office versus just popping in to Staples really believe that the reason firms exist is to lessen the cost of intrafirm activities?

Grossman and Hart (1986) argue that the distinction that really makes a firm a firm is that it owns assets. They retain the idea that contracts may be incomplete – at some point, I will disagree with my suppliers, or my workers, or my branch manager, about what should be done, either because a state of the world has arrived not covered by our contract, or because it is in our first-best mutual interest to renegotiate that contract. They retain the idea that there are relationship-specific rents, so I care about maintaining this particular relationship. But rather than rely on transaction costs, they simply point out that the owner of the asset is in a much better bargaining position when this disagreement occurs. Therefore, the owner of the asset will get a bigger percentage of rents after renegotiation. Hence the person who owns an asset should be the one whose incentive to improve the value of the asset is most sensitive to that future split of rents.

Baker and Hubbard (2004) provide a nice empirical example: when on-board computers to monitor how long-haul trucks were driven began to diffuse, ownership of those trucks shifted from owner-operators to trucking firms. Before the computer, if the trucking firm owns the truck, it is hard to contract on how hard the truck will be driven or how poorly it will be treated by the driver. If the driver owns the truck, it is hard to contract on how much effort the trucking firm dispatcher will exert ensuring the truck isn’t sitting empty for days, or following a particularly efficient route. The computer solves the first problem, meaning that only the trucking firm is taking actions relevant to the joint relationship which are highly likely to be affected by whether they own the truck or not. In Grossman and Hart’s “residual control rights” theory, then, the introduction of the computer should mean the truck ought, post-computer, be owned by the trucking firm. If these residual control rights are unimportant – there is no relationship-specific rent and no incompleteness in contracting – then the ability to shop around for the best relationship is more valuable than the control rights asset ownership provides. Hart and Moore (1990) extends this basic model to the case where there are many assets and many firms, suggesting critically that sole ownership of assets which are highly complementary in production is optimal. Asset ownership affects outside options when the contract is incomplete by changing bargaining power, and splitting ownership of complementary assets gives multiple agents weak bargaining power and hence little incentive to invest in maintaining the quality of, or improving, the assets. Hart, Schleifer and Vishny (1997) provide a great example of residual control rights applied to the question of why governments should run prisons but not garbage collection. (A brief aside: note the role that bargaining power plays in all of Hart’s theories. We do not have a “perfect” – in a sense that can be made formal – model of bargaining, and Hart tends to use bargaining solutions from cooperative game theory like the Shapley value. After Shapley’s prize alongside Roth a few years ago, this makes multiple prizes heavily influenced by cooperative games applied to unexpected problems. Perhaps the theory of cooperative games ought still be taught with vigor in PhD programs!)

There are, of course, many other theories of the firm. The idea that firms in some industries are big because there are large fixed costs to enter at the minimum efficient scale goes back to Marshall. The agency theory of the firm going back at least to Jensen and Meckling focuses on the problem of providing incentives for workers within a firm to actually profit maximize; as I noted yesterday, Holmstrom and Milgrom’s multitasking is a great example of this, with tasks being split across firms so as to allow some types of workers to be given high powered incentives and others flat salaries. More recent work by Bob Gibbons, Rebecca Henderson, Jon Levin and others on relational contracting discusses how the nexus of self-enforcing beliefs about how hard work today translates into rewards tomorrow can substitute for formal contracts, and how the credibility of these “relational contracts” can vary across firms and depend on their history.

Here’s the kicker, though. A striking blow was dealt to all theories which rely on the incompleteness or nonverifiability of contracts by a brilliant paper of Maskin and Tirole (1999) in the Review of Economic Studies. Theories relying on incomplete contracts generally just hand-waved that there are always events which are unforeseeable ex-ante or impossible to verify in court ex-post, and hence there will always scope for disagreement about what to do when those events occur. But, as Maskin and Tirole correctly point out, agent don’t care about anything in these unforeseeable/unverifiable states except for what the states imply about our mutual valuations from carrying on with a relationship. Therefore, every “incomplete contract” should just involve the parties deciding in advance that if a state of the world arrives where you value keeping our relationship in that state at 12 and I value it at 10, then we should split that joint value of 22 at whatever level induces optimal actions today. Do this same ex-ante contracting for all future profit levels, and we are done. Of course, there is still the problem of ensuring incentive compatibility – why would the agents tell the truth about their valuations when that unforeseen event occurs? I will omit the details here, but you should read the original paper where Maskin and Tirole show a (somewhat convoluted but still working) mechanism that induces truthful revelation of private value by each agent. Taking the model’s insight seriously but the exact mechanism less seriously, the paper basically suggests that incomplete contracts don’t matter if we can truthfully figure out ex-post who values our relationship at what amount, and there are many real-world institutions like mediators who do precisely that. If, as Maskin and Tirole prove (and Maskin described more simply in a short note), incomplete contracts aren’t a real problem, we are back to square one – why have persistent organizations called firms?

What should we do? Some theorists have tried to fight off Maskin and Tirole by suggesting that their precise mechanism is not terribly robust to, for instance, assumptions about higher-order beliefs (e.g., Aghion et al (2012) in the QJE). But these quibbles do not contradict the far more basic insight of Maskin and Tirole, that situations we think of empirically as “hard to describe” or “unlikely to occur or be foreseen”, are not sufficient to justify the relevance of incomplete contracts unless we also have some reason to think that all mechanisms which split rent on the basis of future profit, like a mediator, are unavailable. Note that real world contracts regularly include provisions that ex-ante describe how contractual disagreement ex-post should be handled.

Hart’s response, and this is both clear from his CV and from his recent papers and presentations, is to ditch incompleteness as the fundamental reason firms exist. Hart and Moore’s 2007 AER P&P and 2006 QJE are very clear:

Although the incomplete contracts literature has generated some useful insights about firm boundaries, it has some shortcomings. Three that seem particularly important to us are the following. First, the emphasis on noncontractible ex ante investments seems overplayed: although such investments are surely important, it is hard to believe that they are the sole drivers of organizational form. Second, and related, the approach is ill suited to studying the internal organization of firms, a topic of great interest and importance. The reason is that the Coasian renegotiation perspective suggests that the relevant parties will sit down together ex post and bargain to an efficient outcome using side payments: given this, it is hard to see why authority, hierarchy, delegation, or indeed anything apart from asset ownership matters. Finally, the approach has some foundational weaknesses [pointed out by Maskin and Tirole (1999)].

To my knowledge, Oliver Hart has written zero papers since Maskin-Tirole was published which attempt to explain any policy or empirical fact on the basis of residual control rights and their necessary incomplete contracts. Instead, he has been primarily working on theories which depend on reference points, a behavioral idea that when disagreements occur between parties, the ex-ante contracts are useful because they suggest “fair” divisions of rent, and induce shading and other destructive actions when those divisions are not given. These behavioral agents may very well disagree about what the ex-ante contract means for “fairness” ex-post. The primary result is that flexible contracts (e.g., contracts which deliberately leave lots of incompleteness) can adjust easily to changes in the world but will induce spiteful shading by at least one agent, while rigid contracts do not permit this shading but do cause parties to pursue suboptimal actions in some states of the world. This perspective has been applied by Hart to many questions over the past decade, such as why it can be credible to delegate decision making authority to agents; if you try to seize it back, the agent will feel aggrieved and will shade effort. These responses are hard, or perhaps impossible, to justify when agents are perfectly rational, and of course the Maskin-Tirole critique would apply if agents were purely rational.

So where does all this leave us concerning the initial problem of why firms exist in a sea of decentralized markets? In my view, we have many clever ideas, but still do not have the perfect theory. A perfect theory of the firm would need to be able to explain why firms are the size they are, why they own what they do, why they are organized as they are, why they persist over time, and why interfirm incentives look the way they do. It almost certainly would need its mechanisms to work if we assumed all agents were highly, or perfectly, rational. Since patterns of asset ownership are fundamental, it needs to go well beyond the type of hand-waving that makes up many “resource” type theories. (Firms exist because they create a corporate culture! Firms exist because some firms just are better at doing X and can’t be replicated! These are outcomes, not explanations.) I believe that there are reasons why the costs of maintaining relationships – transaction costs – endogenously differ within and outside firms, and that Hart is correct is focusing our attention on how asset ownership and decision making authority affects incentives to invest, but these theories even in their most endogenous form cannot do everything we wanted a theory of the firm to accomplish. I think that somehow reputation – and hence relational contracts – must play a fundamental role, and that the nexus of conflicting incentives among agents within an organization, as described by Holmstrom, must as well. But we still lack the precise insight to clear up this muddle, and give us a straightforward explanation for why we seem to need “little Communist bureaucracies” to assist our otherwise decentralized and almost magical market system.

Nobel Prize 2016 Part I: Bengt Holmstrom

The Nobel Prize in Economics has been announced, and what a deserving prize it is: Bengt Holmstrom and Oliver Hart have won for the theory of contracts. The name of this research weblog is “A Fine Theorem”, and it would be hard to find two economists whose work is more likely to elicit such a description! Both are incredibly deserving; more than five years ago on this site, I discussed how crazy it was that Holmstrom had yet to win!. The only shock is the combination: a more natural prize would have been Holmstrom with Paul Milgrom and Robert Wilson for modern applied mechanism design, and Oliver Hart with John Moore and Sandy Grossman for the theory of the firm. The contributions of Holmstrom and Hart are so vast that I’m splitting this post into two, so as to properly cover the incredible intellectual accomplishments of these two economists.

The Finnish economist Bengt Holmstrom did his PhD in operations research at Stanford, advised by Robert Wilson, and began his career at my alma mater, the tiny department of Managerial Economics and Decision Sciences at Northwestern’s Kellogg School. To say MEDS struck gold with their hires in this era is an extreme understatement: in 1978 and 1979 alone, they hired Holmstrom and his classmate Paul Milgrom (another Wilson student from Stanford), hired Nancy Stokey promoted Nobel laureate Roger Myerson to Associate Professor, and tenured an adviser of mine, Mark Satterthwaite. And this list doesn’t even include other faculty in the late 1970s and early 1980s like eminent contract theorist John Roberts, behavioralist Colin Camerer, mechanism designer John Ledyard or game theorist Ehud Kalai. This group was essentially put together by two senior economists at Kellogg, Nancy Schwartz and Stanley Reiter, who had the incredible foresight to realize both that applied game theory was finally showing promise of tackling first-order economic questions in a rigorous way, and that the folks with the proper mathematical background to tackle these questions were largely going unhired since they often did their graduate work in operations or mathematics departments rather than traditional economics departments. This market inefficiency, as it were, allowed Nancy and Stan to hire essentially every young scholar in what would become the field of mechanism design, and to develop a graduate program which combined operations, economics, and mathematics in a manner unlike any other place in the world.

From that fantastic group, Holmstrom’s contribution lies most centrally in the area of formal contract design. Imagine that you want someone – an employee, a child, a subordinate division, an aid contractor, or more generally an agent – to perform a task. How should you induce them to do this? If the task is “simple”, meaning the agent’s effort and knowledge about how to perform the task most efficiently is known and observable, you can simply pay a wage, cutting off payment if effort is not being exerted. When only the outcome of work can be observed, if there is no uncertainty in how effort is transformed into outcomes, knowing the outcome is equivalent to knowing effort, and hence optimal effort can be achieved via a bonus payment made on the basis of outcomes. All straightforward so far. The trickier situations, which Holmstrom and his coauthors analyzed at great length, are when neither effort nor outcomes are directly observable.

Consider paying a surgeon. You want to reward the doctor for competent, safe work. However, it is very difficult to observe perfectly what the surgeon is doing at all times, and basing pay on outcomes has a number of problems. First, the patient outcome depends on the effort of not just one surgeon, but on others in the operating room and prep table: team incentives must be provided. Second, the doctor has many ways to shift the balance of effort between reducing costs to the hospital, increasing patient comfort, increasing the quality of the medical outcome, and mentoring young assistant surgeons, so paying on the basis of one or two tasks may distort effort away from other harder-to-measure tasks: there is a multitasking problem. Third, the number of medical mistakes, or the cost of surgery, that a hospital ought expect from a competent surgeon depends on changes in training and technology that are hard to know, and hence a contract may want to adjust payments for its surgeons on the performance of surgeons elsewhere: contracts ought take advantage of relevant information when it is informative about the task being incentivized. Fourth, since surgeons will dislike risk in their salary, the fact that some negative patient outcomes are just bad luck means that you will need to pay the surgeon very high bonuses to overcome their risk aversion: when outcome measures involve uncertainty, optimal contracts will weigh “high-powered” bonuses against “low-powered” insurance against risk. Fifth, the surgeon can be incentivized either by payments today or by keeping their job tomorrow, and worse, these career concerns may cause the surgeon to waste the hospital’s money on tasks which matter to the surgeon’s career beyond the hospital.

Holmstrom wrote the canonical paper on each of these topics. His 1979 paper in the Bell Journal of Economics shows that any information which reduces the uncertainty about what an agent actually did should feature in a contract, since by reducing uncertainty, you reduce the risk premium needed to incentivize the agent to accept the contract. It might seem strange that contracts in many cases do not satisfy this “informativeness principle”. For instance, CEO bonuses are often not indexed to the performance of firms in the same industry. If oil prices rise, essentially all oil firms will be very profitable, and this is true whether or not a particular CEO is a good one. Bertrand and Mullainathan argue that this is because many firms with diverse shareholders are poorly governed!

The simplicity of contracts in the real world may have more prosaic explanations. Jointly with Paul Milgrom, the famous “multitasking” paper published in JLEO in 1991 notes that contracts shift incentives across different tasks in addition to serving as risk-sharing mechanisms and as methods for inducing effort. Since bonuses on task A will cause agents to shift effort away from hard-to-measure task B, it may be optimal to avoid strong incentives at all (just pay teachers a salary rather than a bonus based only on test performance) or to split job tasks (pay bonuses to teacher A who is told to focus only on math test scores, and pay salary to teacher B who is meant to serve as a mentor). That outcomes are generated by teams also motivates simpler contracts. Holmstrom’s 1982 article on incentives in teams, published in the Bell Journal, points out that if both my effort and yours is required to produce a good outcome, then the marginal product of our efforts are both equal to the entire value of what is produced, hence there is not enough output to pay each of us our marginal product. What can be done? Alchian and Demsetz had noticed this problem in 1972, arguing that firms exist to monitor the effort of individuals working in teams. With perfect knowledge of who does what, you can simply pay the workers a wage sufficient to make the optimal effort, then collect the residual as profit. Holmstrom notes that the monitoring isn’t the important bit: rather, even shareholder controlled firms where shareholders do no monitoring at all are useful. The reason is that shareholders can be residual claimants for profit, and hence there is no need to fully distribute profit to members of the team. Free-riding can therefore be eliminated by simply paying team members a wage of X if the team outcome is optimal, and 0 otherwise. Even a slight bit of shirking by a single agent drops their payment precipitously (which is impossible if all profits generated by the team are shared by the team), so the agents will not shirk. Of course, when there is uncertainty about how team effort transforms into outcomes, this harsh penalty will not work, and hence incentive problems may require team sizes to be smaller than that which is first-best efficient. A third justification for simple contracts is career concerns: agents work hard today to try to signal to the market that they are high quality, and do so even if they are paid a fixed wage. This argument had been made less formally by Fama, but Holmstrom (in a 1982 working paper finally published in 1999 in RESTUD) showed that this concern about the market only completely mitigates moral hazard if outcomes within a firm were fully observable to the market, or the future is not discounted at all, or there is no uncertainty about agent’s abilities. Indeed, career concerns can make effort provision worse; for example, agents may take actions to signal quality to the market which are negative for their current firm! A final explanation for simple contracts comes from Holmstrom’s 1987 paper with Milgrom in Econometrica. They argue that simple “linear” contracts, with a wage and a bonus based linearly on output, are more “robust” methods of solving moral hazard because they are less susceptible to manipulation by agents when the environment is not perfectly known. Michael Powell, a student of Holmstrom’s now at Northwestern, has a great set of PhD notes providing details of these models.

These ideas are reasonably intuitive, but the way Holmstrom answered them is not. Think about how an economist before the 1970s, like Adam Smith in his famous discussion of the inefficiency of sharecropping, might have dealt with these problems. These economists had few tools to deal with asymmetric information, so although economists like George Stigler analyzed the economic value of information, the question of how to elicit information useful to a contract could not be discussed in any systematic way. These economists would have been burdened by the fact that the number of contracts one could write are infinite, so beyond saying that under a contract of type X does not equate marginal cost to marginal revenue, the question of which “second-best” contract is optimal is extraordinarily difficult to answer in the absence of beautiful tricks like the revelation principle partially developed by Holmstrom himself. To develop those tricks, a theory of how individuals would respond to changes in their joint incentives over time was needed; the ideas of Bayesian equilibria and subgame perfection, developed by Harsanyi and Selten, were unknown before the 1960s. The accretion of tools developed by pure theory finally permitted, in the late 1970s and early 1980s, an absolute explosion of developments of great use to understanding the economic world. Consider, for example, the many results in antitrust provided by Nobel winner Jean Tirole, discussed here two years ago.

Holmstrom’s work has provided me with a great deal of understanding of why innovation management looks the way it does. For instance, why would a risk neutral firm not work enough on high-variance moonshot-type R&D projects, a question Holmstrom asks in his 1989 JEBO Agency Costs and Innovation? Four reasons. First, in Holmstrom and Milgrom’s 1987 linear contracts paper, optimal risk sharing leads to more distortion by agents the riskier the project being incentivized, so firms may choose lower expected value projects even if they themselves are risk neutral. Second, firms build reputation in capital markets just as workers do with career concerns, and high variance output projects are more costly in terms of the future value of that reputation when the interest rate on capital is lower (e.g., when firms are large and old). Third, when R&D workers can potentially pursue many different projects, multitasking suggests that workers should be given small and very specific tasks so as to lessen the potential for bonus payments to shift worker effort across projects. Smaller firms with fewer resources may naturally have limits on the types of research a worker could pursue, which surprisingly makes it easier to provide strong incentives for research effort on the remaining possible projects. Fourth, multitasking suggests agent’s tasks should be limited, and that high variance tasks should be assigned to the same agent, which provides a role for decentralizing research into large firms providing incremental, safe research, and small firms performing high-variance research. That many aspects of firm organization depend on the swirl of conflicting incentives the firm and the market provide is a topic Holmstrom has also discussed at length, especially in his beautiful paper “The Firm as an Incentive System”; I shall reserve discussion of that paper for a subsequent post on Oliver Hart.

Two final light notes on Holmstrom. First, he is the source of one of my favorite stories about Paul Samuelson, the greatest economic theorist of all time. Samuelson was known for having a steel trap of a mind. At a light trivia session during a house party for young faculty at MIT, Holmstrom snuck in a question, as a joke, asking for the name of the third President of independent Finland. Samuelson not only knew the name, but apparently was also able to digress on the man’s accomplishments! Second, I mentioned at the beginning of this post the illustrious roster of theorists who once sat at MEDS. Business school students are often very hesitant to deal with formal models, partially because they lack a technical background but also because there is a trend of “dumbing down” in business education whereby many schools (of course, not including my current department at The University of Toronto Rotman!) are more worried about student satisfaction than student learning. With perhaps Stanford GSB as an exception, it is inconceivable that any school today, Northwestern included, would gather such an incredible collection of minds working on abstract topics whose applicability to tangible business questions might lie years in the future. Indeed, I could name a number of so-called “top” business schools who have nobody on their faculty who has made any contribution of note to theory! There is a great opportunity for a Nancy Schwartz or Stan Reiter of today to build a business school whose students will have the ultimate reputation for rigorous analysis of social scientific questions.

“Patents as a Spur to Subsequent Innovation: Evidence from Pharmaceuticals,” D. Gilchrist (2016)

Many economists of innovation are hostile to patents as they currently stand: they do not seem to be important drivers of R&D in most industries, the market power they lead to generates substantial deadweight loss, the legal costs around enforcing patents are incredible, and the effect on downstream innovation can be particularly harmful. The argument for patents seems most clear cut in industries where the invention requires large upfront fixed costs of R&D that are paid only by the first inventor, where the invention is clearly delineated, where novelty is easy to understand, and where alternative means of inducing innovation (such as market power in complementary markets, or a large first mover advantage) do not exist. The canonical example of an industry of this type is pharma.

Duncan Gilchrist points out that the market power a patentholder obtains also affects the rents of partial substitutes which might be invented later. Imagine there is a blockbuster statin on patent. If I invent a related drug, the high price of the existing patented drug means I can charge a fairly high price too. If the blockbuster drug were off patent, though, my competitors would be generics whose low price would limit how much I can charge. In other words, the “effective” patent strength in terms of the markup I can charge depends on whether alternatives to my new drug are on patent or are generic. Therefore, the profits I will earn from my drug will be lower when alternative generics exist, and hence my incentive to pay a fixed cost to create the new drug will also be lower.

What does this mean for welfare? A pure “me-too” imitation drug, which generates very little social value compared to the existing patented drug, will never enter if its class is going to see generics in a few years anyway; profits will be competed down to zero. That same drug might find it worthwhile to pay a fixed cost of invention and earn duopoly profits if the existing on patent alternative had many years of patent protection remaining. On the other hand, a drug so much better than existing drugs that even at the pure monopoly price most consumers would prefer it to the existing alternative priced at marginal cost will be developed no matter what, since it faces no de facto restriction on its markup from whether the alternatives in its drug class are generics or otherwise. Therefore, longer patent protection from existing drugs increases entry of drugs in the same class, but mainly those that are only a bit better than existing drugs. This may be better or worse for welfare: there is a wasteful costs of entering with a drug only slightly better than what exists (the private return includes the business stealing, while social welfare doesn’t), but there are also lower prices and perhaps some benefit from variety.

I should note a caveat that really should have been noted in the existing model: changes in de facto patent length for the first drug in class also affect the entry decision of that drug. Longer patent protection may actually cause shorter effective monopoly by inducing entry of imitators! This paper is mainly empirical, so no need for a full Aghion Howitt ’92 model of creative destruction, but it is at least worth noting that the welfare implications of changes in patent protection are somewhat misstated because of this omission.

Empirically, Gilchrist shows clearly that the beginning of new clinical trials for drugs falls rapidly as the first drug in their class has less time remaining on patent: fear of competition with generic partial substitutes dulls the incentive to innovate. The results are clear in straightforward scatterplots, but there is also an IV, to help confirm the causal interpretation, using the gap between the first potentially-defensive patent on the fulcrum patent of the eventual drug, and the beginning of clinical trials, a gap that is driven by randomness in things like unexpected delays in in-house laboratory progress. Using the fact that particularly promising drugs get priority FDA review, Gilchrist also shows that these priority review entrants do not seem to be worried at all about competition from generic substitutes: the “me-too” type of drugs are the ones for whom alternatives going off patent is most damaging to profits.

Final published version in AEJ: Applied 8(4) (No RePEc IDEAS version). Gilchrist is a rare example of a well published young economist working in the private sector; he has a JPE on social learning and a Management Science on behavioral labor in addition to the present paper, but works at robo-investor Wealthfront. In my now six year dataset of the economics job market (which I should discuss again at some point), roughly 2% of “job market stars” wind up outside academia. Budish, Roin and Williams used the similar idea of investigating the effect of patents of innovation by taking advantage of the differing effective patent length drugs for various maladies get as a result of differences in the length of clinical trials following the patent grant. Empirical work on the effect of patent rules is, of course, very difficult since de jure patent strength is very similar in essentially every developed country and every industry; taking advantage of differences in de facto strength is surely a trick that will be applied more broadly.

“Scale versus Scope in the Diffusion of New Technology,” D. Gross (2016)

I am spending part of the fall down at Duke University visiting the well-known group of innovation folks at Fuqua and co-teaching a PhD innovation course with Wes Cohen, who you may know via his work on Absorptive Capacity (EJ, 1989), the “Carnegie Mellon” survey of inventors with Dick Nelson and John Walsh, and his cost sharing R&D argument (article gated) with Steven Klepper. Last week, the class went over a number of papers on the diffusion of technology over space and time, a topic of supreme importance in the economics of innovation.

There are some canonical ideas in diffusion. First, cumulative adoption on the extensive margin – are you or your firm using technology X – follows an S-curve, rising slowly, then rapidly, then slowly again until peak adoption is reached. This fact is known to economists thanks to Griliches 1957 but the idea was initially developed by social psychologists and sociologists. Second, there are massive gaps in the ability of firms and nations to adopt and quickly diffuse new technologies – Diego Comin and Burt Hobijn have written a great deal on this problem. Third, the reason why technologies are slow to adopt depends on many factors, including social learning (e.g., Conley and Udry on pineapple growing in Ghana), pure epidemic-style network spread (the “Bass model”), capital replacement, “appropriate technologies” arriving once conditions are appropriate, and many more.

One that is very much underrated, however, is that technologies diffuse because they and their complements change over time. Dan Gross from HBS, another innovation scholar who likes delving into history, has a great example: the early tractor. The tractor was, in theory, invented in the 1800s, but was uneconomical and not terribly useful. With an invention by Ford in the 1910s, tractors began to spread, particularly among the US wheat belt. The tractor eventually spreads to the rest of the Midwest in the late 1920s and 1930s. A back-of-the-envelope calculation by Gross suggests the latter diffusion saved something like 10% of agricultural labor in the areas where it spread. Why, then, was there such a lag in many states?

There are many hypotheses in the literature: binding financial constraints, differences in farm sizes that make tractors feasible in one area and not another, geographic spread via social learning, and so on. Gross’ explanation is much more natural: early tractors could not work with crops like corn, and it wasn’t until after a general purpose tractor was invented in the 1920s that complementary technologies were created allowing the tractor to be used on a wide variety of farms. The charts are wholly convincing on this point: tractor diffusion time is very much linked to dominant crop, the early tractor “skipped” geographies where were inappropriate, and farms in areas where tractors diffused late nonetheless had substantial diffusion of automobiles, suggesting capital constraints were not the binding factor.

But this leaves one more question: why didn’t someone modify the tractor to make it general purpose in the first place? Gross gives a toy model that elucidates the reason quite well. Assume there is a large firm that can innovate on a technology, and can either develop a general purpose or applied versions of the technology. Assume that there is a fringe of firms that can develop complementary technology to the general purpose one (a corn harvester, for instance). If the large firm is constrained in how much innovation it can perform at any one time, it will first work on the project with highest return. If the large firm could appropriate the rents earned by complements – say, via a licensing fee – it would like to do so, but that licensing fee would decrease the incentive to develop the complements in the first place. Hence the large firm may first work on direct applications where it can capture a larger share of rents. This will imply that technology diffuses slowly first because applications are very specialized, then only as the high-return specialties have all been developed will it become worthwhile to shift researchers over to the general purpose technology. The general purpose technology will induce complements and hence rapid diffusion. As adoption becomes widespread, the rate of adoption slows down again. That is, the S-curve is merely an artifact of differing incentives to change the scope of an invention. Much more convincing that reliance on behavioral biases!

2016 Working Paper (RePEc IDEAS version). I have a paper with Jorge Lemus at Illinois on the problem of incentivizing firms to work on the right type of project, and the implications thereof. We didn’t think in terms of product diffusion, but the incentive to create general purpose technologies can absolutely be added straight into a model of that type.

Reinhard Selten and the making of modern game theory

Reinhard Selten, it is no exaggeration, is a founding father of two massive branches of modern economics: experiments and industrial organization. He passed away last week after a long and idiosyncratic life. Game theory as developed by the three co-Nobel laureates Selten, Nash, and Harsanyi is so embedded in economic reasoning today that, to a great extent, it has replaced price theory as the core organizing principle of our field. That this would happen was not always so clear, however.

Take a look at some canonical papers before 1980. Arrow’s Possibility Theorem simply assumed true preferences can be elicited; not until Gibbard and Satterthwaite do we answer the question of whether there is even a social choice rule that can elicit those preferences truthfully! Rothschild and Stiglitz’s celebrated 1976 essay on imperfect information in insurance markets defines equilibria in terms of a individual rationality, best responses in the Cournot sense, and free entry. How odd this seems today – surely the natural equilibrium in an insurance market depends on beliefs about the knowledge held by others, and beliefs about those beliefs! Analyses of bargaining before Rubinstein’s 1982 breakthrough nearly always rely on axioms of psychology rather than strategic reasoning. Discussions of predatory pricing until the 1970s, at the very earliest, relied on arguments that we now find unacceptably loose in their treatment of beliefs.

What happened? Why didn’t modern game-theoretic treatment of strategic situations – principally those involve more than one agent but less than an infinite number, although even situations of perfect competition now often are motivated game theoretically – arrive soon after the proofs of von Neumann, Morganstern, and Nash? Why wasn’t the Nash program, of finding justification in self-interested noncooperative reasoning for cooperative or axiom-driven behavior, immediately taken up? The problem was that the core concept of the Nash equilibrium simply permits too great a multiplicity of outcomes, some of which feel natural and others of which are less so. As such, a long search, driven essentially by a small community of mathematicians and economists, attempted to find the “right” refinements of Nash. And a small community it was: I recall Drew Fudenberg telling a story about a harrowing bus ride at an early game theory conference, where a fellow rider mentioned offhand that should they crash, the vast majority of game theorists in the world would be wiped out in one go!

Selten’s most renowned contribution came in the idea of perfection. The concept of subgame perfection was first proposed in a German-language journal in 1965 (making it one of the rare modern economic classics inaccessible to English speakers in the original, alongside Maurice Allais’ 1953 French-language paper in Econometrica which introduces the Allais paradox). Selten’s background up to 1965 is quite unusual. A young man during World War II, raised Protestant but with one Jewish parent, Selten fled Germany to work on farms, and only finished high school at 20 and college at 26. His two interests were mathematics, for which he worked on the then-unusual extensive form game for his doctoral degree, and experimentation, inspired by the small team of young professors at Frankfurt trying to pin down behavior in oligopoly through small lab studies.

In the 1965 paper, on demand inertia (paper is gated), Selten wrote a small game theoretic model to accompany the experiment, but realized there were many equilibria. The term “subgame perfect” was not introduced until 1974, also by Selten, but the idea itself is clear in the ’65 paper. He proposed that attention should focus on equilibria where, after every action, each player continues to act rationally from that point forward; that is, he proposed that in every “subgame”, or every game that could conceivably occur after some actions have been taken, equilibrium actions must remain an equilibrium. Consider predatory pricing: a firm considers lowering price below cost today to deter entry. It is a Nash equilibrium for entrants to believe the price would continue to stay low should they enter, and hence to not enter. But it is not subgame perfect: the entrant should reason that after entering, it is not worthwhile for the incumbent to continue to lose money once the entry has already occurred.

Complicated strings of deductions which rule out some actions based on faraway subgames can seem paradoxical, of course, and did even to Selten. In his famous Chain Store paradox, he considers a firm with stores in many locations choosing whether to price aggressively to deter entry, with one potential entrant in each town choosing one at a time whether to enter. Entrants prefer to enter if pricing is not aggressive, but prefer to remain out otherwise; incumbents prefer to price nonaggressively either if entry occurs or not. Reasoning backward, in the final town we have the simple one-shot predatory pricing case analyzed above, where we saw that entry is the only subgame perfect equilibria. Therefore, the entrant in the second-to-last town knows that the incumbent will not fight entry aggressively in the final town, hence there is no benefit to doing so in the second-to-last town, hence entry occurs again. Reasoning similarly, entry occurs everywhere. But if the incumbent could commit in advance to pricing aggressively in, say, the first 10 towns, it would deter entry in those towns and hence its profits would improve. Such commitment may not possible, but what if the incumbent’s reasoning ability is limited, and it doesn’t completely understand why aggressive pricing in early stages won’t deter the entrant in the 16th town? And what if entrants reason that the incumbent’s reasoning ability is not perfectly rational? Then aggressive pricing to deter entry can occur.

That behavior may not be perfectly rational but rather bounded had been an idea of Selten’s since he read Herbert Simon as a young professor, but in his Nobel Prize biography, he argues that progress on a suitable general theory of bounded rationality has been hard to come by. The closest Selten comes to formalizing the idea is in his paper on trembling hand perfection in 1974, inspired by conversations with John Harsanyi. The problem with subgame perfection had been noted: if an opponent takes an action off the equilibrium path, it is “irrational”, so why should rationality of the opponent be assumed in the subgame that follows? Harsanyi assumes that tiny mistakes can happen, putting even rational players into subgames. Taking the limit as mistakes become infinitesimally rare produces the idea of trembling-hand perfection. The idea of trembles implicitly introduces the idea that players have beliefs at various information sets about what has happened in the game. Kreps and Wilson’s sequential equilibrium recasts trembles as beliefs under uncertainty, and showed that a slight modification of the trembling hand leads to an easier decision-theoretic interpretation of trembles, an easier computation of equilibria, and an outcome that is nearly identical to Selten’s original idea. Sequential equilibria, of course, goes on to become to workhorse solution concept in dynamic economics, a concept which underscores essentially all of modern industrial organization.

That Harsanyi, inventor of the Bayesian game, is credited by Selten for inspiring the trembling hand paper is no surprise. The two had met at a conference in Jerusalem in the mid-1960s, and they’d worked together both on applied projects for the US military, and on pure theory research while Selten visiting Berkeley. A classic 1972 paper of theirs on Nash bargaining with incomplete information (article is gated) begins the field of cooperative games with incomplete information. And this was no minor field: Roger Myerson, in his paper introducing mechanism design under incomplete information – the famous Bayesian revelation principle paper – shows that there exists a unique Selten-Harsanyi bargaining solution under incomplete information which is incentive compatible.

Myerson’s example is amazing. Consider building a bridge which costs $100. Two people will use the bridge. One values the bridge at $90. The other values the bridge at $90 with probability .9, and $30 with probability p=.1, where that valuation is the private knowledge of the second person. Note that in either case, the bridge is worth building. But who should pay? If you propose a 50/50 split, the bridge will simply not be built 10% of the time. If you propose an 80/20 split, where even in their worst case situation each person gets a surplus value of ten dollars, the outcome is unfair to player one 90% of the time (where “unfair” will mean, violates certain principles of fairness that Nash, and later Selten and Harsanyi, set out axiomatically). What of the 53/47 split that gives each party, on average, the same split? Again, this is not “interim incentive compatible”, in that player two will refuse to pay in the case he is the type that values the bridge only at $30. Myerson shows mathematically that both players will agree once they know their private valuations to the following deal, and that the deal satisfies the Selten-Nash fairness axioms: when player 2 claims to value at $90, the payment split is 49.5/50.5 and the bridge is always built, but when player 2 claims to value at $30, the entire cost is paid by player 1 but the bridge is built with only probability .439. Under this split, there are correct incentives for player 2 to always reveal his true willingness to pay. The mechanism means that there is a 5.61 percent chance the bridge isn’t built, but the split of surplus from the bridge nonetheless does better than any other split which satisfies all of Harsanyi and Selten’s fairness axioms.

Selten’s later work is, it appears to me, more scattered. His attempt with Harsanyi to formalize “the” equilibrium refinement, in a 1988 book, was a valiant but in the end misguided attempt. His papers on theoretical biology, inspired by his interest in long walks among the wildflowers, are rather tangential to his economics. And what of his experimental work? To understand Selten’s thinking, read this fascinating dialogue with himself that Selten gave as a Schwartz Lecture at Northwestern MEDS. In this dialogue, he imagines a debate between a Bayesian economist, experimentalist, and an evolutionary biologist. The economist argues that “theory without theorems” is doomed to fail, that Bayesianism is normatively “correct”, and the Bayesian reasoning can easily be extended to include costs of reasoning or reasoning mistakes. The experimentalist argues that ad hoc assumptions are better than incorrect ones: just as human anatomy is complex and cannot be reduced to a few axioms, neither can social behavior. The biologist argues that learning a la Nelson and Winter is descriptively accurate as far as how humans behave, whereas high level reasoning is not. The “chairman”, perhaps representing Selten himself, sums up the argument as saying that experiments which simply contradict Bayesianism are a waste of time, but that human social behavior surely depends on bounded rationality and hence empirical work ought be devoted to constructing a foundation for such a theory (shall we call this the “Selten program”?). And yet, this essay was from 1990, and we seem no closer to having such a theory, nor does it seem to me that behavioral research has fundamentally contradicted most of our core empirical understanding derived from theories with pure rationality. Selten’s program, it seems, remains not only incomplete, but perhaps not even first order; the same cannot be said of his theoretical constructs, as without perfection a great part of modern economics simply could not exist.

“The Gift of Moving: Intergenerational Consequences of a Mobility Shock,” E. Nakamura, J. Sigurdsson & J. Steinsson (2016)

The past decade has seen interesting work in many fields of economics on the importance of misallocation for economic outcomes. Hsieh and Klenow’s famous 2009 paper suggested that misallocation of labor and capital in the developing world costs countries like China and India the equivalent of many years of growth. The same two authors have a new paper with Erik Hurst and Chad Jones suggesting that a substantial portion of the growth in the US since 1960 has been via better allocation of workers. In 1960, they note, 94 percent of doctors and lawyers were white men, versus 62 percent today, and we have no reason to believe the innate talent distribution in those fields had changed. Therefore, there were large numbers of women and minorities who would have been talented enough to work in these high-value fields in 1960, but due to misallocation (including in terms of who is educated) did not. Lucia Foster, John Haltiwanger and Chad Syverson have a famous paper in the AER on how to think about reallocation within industries, and the extent to which competition reallocates production from less efficient to more efficient producers; this is important because it is by now well-established that there is an enormous range of productivity within each industry, and hence potentially enormous efficiency gains from proper reallocation away from low-productivity producers.

The really intriguing misallocation question, though, is misallocation of workers across space. Some places are very productive, and others are not. Why don’t workers move? Part of the explanation, particularly in the past few decades, is that due to increasing land use regulation, local changes in total factor productivity increase housing costs, meaning that only high skilled workers gain much by mobility in response to shocks (see, e.g., Ganong and Shoag on the direct question of who benefits from moving, and Hornbeck and Moretti on the effects of productivity shocks on rents and incomes).

A second explanation is that people, quite naturally, value their community. They value their community both because they have friends and often family in the area, and also because they make investments in skills that are well-matched to where they live. For this reason, even if Town A is 10% more productive for the average blue-collar worker, a particular worker in Town B may be reluctant to move if it means giving up community connections or trying to relearn a different skill. This effect appears to be important particularly for people whose original community is low productivity: Deyrugina, Kawano and Levitt showed how those induced out of poor areas of New Orleans by Hurricane Katrina would up with higher wages than those whose neighborhoods were not flooded, and (the well-surnamed) Bryan, Chowdhury and Mobarak find large gains in income when they induce poor rural Bangladeshis to temporarily move to cities.

Today’s paper, by Nakamura et al, is interesting because it shows these beneficial effects of being forced out of one’s traditional community can hold even if the community is rich. The authors look at the impact of the 1973 volcanic eruption which destroyed a large portion of the main town, a large fishing village, on Iceland’s Westman Islands. Though the town had only 5200 residents, this actually makes it large by Icelandic standards: even today, there is only one town on the whole island which is both larger than that and located more than 45 minutes drive from the capital. Further, though the town is a fishing village, it was then and is now quite prosperous due to its harbor, a rarity in Southern Iceland. Residents whose houses were destroyed were compensated by the government, and could have either rebuilt on the island or moved away: those with destroyed houses wind up 15 percentage points more likely to move away than islanders whose houses remained intact.

So what happened? If you were a kid when your family moved away, the instrumental variables estimation suggests you got an average of 3.6 more years of schooling and mid-career earnings roughly 30,000 dollars higher than if you’d remained! Adults who left saw, if anything, a slight decrease in their lifetime earnings. Remember that the Westman Islands were and are wealthier than the rest of Iceland, so moving would really only benefit those whose dynasties had comparative advantage in fields other than fishing. In particular, parents with college educations were more likely to be move, conditional on their house being destroyed, than those without. So why did those parents need to be induced by the volcano to pack up? The authors suggest some inability to bargain as a household (the kids benefited, but not the adults), as well as uncertainty (naturally, whether moving would increase kids’ wages forty years later may have been unclear). From the perspective of a choice model, however, the outcome doesn’t seem unusual: parents, due to their community connections and occupational choice, would have considered moving very costly, even if they knew it was in their kid’s best long-term interests.

There is a lesson in the Iceland experience, as well as in the Katrina papers and other similar results: economic policy should focus on people, and not communities. Encouraging closer community ties, for instance, can make reallocation more difficult, and can therefore increase long-run poverty, by increasing the subjective cost of moving. When we ask how to handle long-run poverty in Appalachia, perhaps the answer is to provide assistance for groups who want to move, therefore gaining the benefit of reallocation across space while lessening the perceived cost of moving (my favorite example of clustered moves is that roughly 5% of the world’s Marshall Islanders now live in Springdale, Arkansas!). Likewise, limits on the movement of parolees across states can entrench poverty at precisely the time the parolee likely has the lowest moving costs.

June 2016 Working Paper (No RePEc IDEAS version yet).

Yuliy Sannikov and the Continuous Time Approach to Dynamic Contracting

The John Bates Clark Award, given to the best economist in the United States under 40, was given to Princeton’s Yuliy Sannikov today. The JBC has, in recent years, been tilted quite heavily toward applied empirical microeconomics, but the prize for Sannikov breaks that streak in striking fashion. Sannikov, it can be fairly said, is a mathematical genius and a high theorist of the first order. He is one of a very small number of people to win three gold medals at the International Math Olympiad – perhaps only Gabriel Carroll, another excellent young theorist, has an equally impressive mathematical background in his youth. Sannikov’s most famous work is in the pure theory of dynamic contracting, which I will spend most of this post discussing, but the methods he has developed turn out to have interesting uses in corporate finance and in macroeconomic models that wish to incorporate a financial sector without using linearization techniques that rob such models of much of their richness. A quick warning: Sannikov’s work is not for the faint of heart, and certainly not for those scared of an equation or two. Economists – and I count myself among this group – are generally scared of differential equations, as they don’t appear in most branches of economic theory (with exceptions, of course: Romer’s 1986 work on endogenous growth, the turnpike theorems, the theory of evolutionary games, etc.). As his work is incredibly technical, I will do my best to provide an overview of his basic technique and its uses without writing down a bunch of equations, but there really is no substitute for going to the mathematics itself if you find these ideas interesting.

The idea of dynamic contracting is an old one. Assume that a risk-neutral principal can commit to a contract that pays an agent on the basis of observed output, with that output being generated this year, next year, and so on. A risk-averse agent takes an unobservable action in every period, which affects output subject to some uncertainty. Payoffs in the future are discounted. Take the simplest possible case: there are two periods, an agent can either work hard or not, output is either 1 or 0, and the probability it is 1 is higher if the agent works hard than otherwise. The first big idea in the dynamic moral hazard of the late 1970s and early 1980s (in particular, Rogerson 1985 Econometrica, Lambert 1983 Bell J. Econ, Lazear and Moore 1984 QJE) is that the optimal contract will condition period 2 payoffs on whether there was a good or bad outcome in period 1; that is, payoffs are history-dependent. The idea is that you can use payoffs in period 2 to induce effort in period 1 (because continuation value increases) and in period 2 (because there is a gap between the payment following good or bad outcomes in that period), getting more bang for your buck. Get your employee to work hard today by dangling a chance at a big promotion opportunity tomorrow, then actually give them the promotion if they work hard tomorrow.

The second big result is that dynamic moral hazard (caveat: at least in cases where saving isn’t possible) isn’t such a problem. In a one-shot moral hazard problem, there is a tradeoff between risk aversion and high powered incentives. I either give you a big bonus when things go well and none if things go poorly (in which case you are induced to work hard, but may be unhappy because much of the bonus is based on things you can’t control), or I give you a fixed salary and hence you have no incentive to work hard. The reason this tradeoff disappears in a dynamic context is that when the agent takes actions over and over and over again, the principle can, using a Law of Large Numbers type argument, figure out exactly the frequency at which the agent has been slacking off. Further, when the agent isn’t slacking off, the uncertainty in output each period is just i.i.d., hence the principal can smooth out the agent’s bad luck, and hence as the discount rate goes to zero there is no tradeoff between providing incentives and the agent’s dislike of risk. Both of these results will hold even in infinite period models, where we just need to realize that all the agent cares about is her expected continuation value following every action, and hence we can analyze infinitely long problems in a very similar way to two period problems (Spear and Srivistava 1987).

Sannikov revisited this literature by solving for optimal or near-to-optimal contracts when agents take actions in continuous rather than discrete time. Note that the older literature generally used dynamic programming arguments and took the discount rate to a limit of zero in order to get interested results. These dynamic programs generally were solved using approximations that formed linear programs, and hence precise intuition of why the model was generating particular results in particular circumstances wasn’t obvious. Comparative statics in particular were tough – I can tell you whether an efficient contract exists, but it is tough to know how that efficient contract changes as the environment changes. Further, situations where discounting is positive are surely of independent interest – workers generally get performance reviews every year, contractors generally do not renegotiate continuously, etc. Sannikov wrote a model where an agent takes actions that control the mean of output continuously over time with Brownian motion drift (a nice analogue of the agent taking an action that each period generates some output that depends on the action and some random term). The agent has the usual decreasing marginal utility of income, so as the agent gets richer over time, it becomes tougher to incentivize the agent with a few extra bucks of payment.

Solving for the optimal contract essentially involves solving two embedded dynamic optimization problems. The agent optimizes effort over time given the contract the principal committed to, and hence the agent chooses an optimal dynamic history-dependent contract given what the agent will do in response. The space of possible history-dependent contracts is enormous. Sannikov shows that you can massively simplify, and solve analytically, for the optimal contract using a four step argument.

First, as in the discrete time approach, we can simplify things by noting that the agent only cares about their continuous-time continuation value following every action they make. The continuation value turns out to be a martingale (conditioning on history, my expectation of the continuation value tomorrow is just my continuation value today), and is basically just a ledger of my promises that I have made to the agent in the future on the basis of what happened in the past. Therefore, to solve for the optimal contract, I should just solve for the optimal stochastic process that determines the continuation value over time. The Martingale Representation Theorem tells me exactly and uniquely what that stochastic process must look like, under the constraint that the continuation value accurately “tracks” past promises. This stochastic process turns out to have a particular analytic form with natural properties (e.g., if you pay flow utility today, you can pay less tomorrow) that depend on the actions the agents take. Second, plug the agent’s incentive compatibility constraint into our equation for the stochastic process that determines the continuation value over time. Third, we just maximize profits for the principal given the stochastic process determining continuation payoffs that must be given to the agent. The principal’s problem determines an HJB equation which can be solved using Ito’s rule plus some effort checking boundary conditions – I’m afraid these details are far too complex for a blog post. But the basic idea is that we wind up with an analytic expression for the optimal way to control the agent’s continuation value over time, and we can throw all sorts of comparative statics right at that equation.

What does this method give us? Because the continuation value and the flow payoffs can be constructed analytically even for positive discount rates, we can actually answer questions like: should you use long-term incentives (continuation value) or short-term incentives (flow payoffs) more when, e.g., your workers have a good outside option? What happens as the discount rate increases? What happens if the uncertainty in the mapping between the agent’s actions and output increases? Answering questions of these types is very challenging, if not impossible, in a discrete time setting.

Though I’ve presented the basic Sannikov method in terms of incentives for workers, dynamic moral hazard – that certain unobservable actions control prices, or output, or other economic parameters, and hence how various institutions or contracts affect those unobservable actions – is a widespread problem. Brunnermeier and Sannikov have a nice recent AER which builds on the intuition of Kiyotaki-Moore models of the macroeconomy with financial acceleration. The essential idea is that small shocks in the financial sector may cause bigger real economy shocks due to deleveraging. Brunnermeier and Sannikov use the continuous-time approach to show important nonlinearities: minor financial shocks don’t do very much since investors and firms rely on their existing wealth, but major shocks off the steady state require capital sales which further depress asset prices and lead to further fire sales. A particularly interesting result is that exogenous risk is low – the economy isn’t very volatile – then there isn’t much precautionary savings, and so a shock that hits the economy will cause major harmful deleveraging and hence endogenous risk. That is, the very calmness of the world economy since 1983 may have made the eventual recession in 2008 worse due to endogenous choices of cash versus asset holdings. Further, capital requirements may actually be harmful if they aren’t reduced following shocks, since those very capital requirements will force banks to deleverage, accelerating the downturn started by the shock.

Sannikov’s entire oeuvre is essentially a graduate course in a new technique, so if you find the results described above interesting, it is worth digging deep into his CV. He is a great choice for the Clark medal, particularly given the deep and rigorous application he has applied his theory to in recent years. There really is no simple version of his results, but his 2012 survey, his recent working paper on moral hazard in labor contracts, and his dissertation work published in Econometrica in 2007 are most relevant. In related work, we’ve previously discussed on this site David Rahman’s model of collusion with continuous-time information flow, a problem very much related to work by Sannikov and his coauthor Andrzej Skrzypacz, as well as Aislinn Bohren’s model of reputation which is related to the single longest theory paper I’ve ever seen, Sannikov and Feingold’s Econometrica on the possibility of “fooling people” by pretending to be a type that you are not. I also like that this year’s JBC makes me look like a good prognosticator: Sannikov is one of a handful of names I’d listed as particularly deserving just two years ago when Gentzkow won!

%d bloggers like this: